TY - JOUR A1 - Ngwa, Che Julius A1 - Scheuermayer, Matthias A1 - Mair, Gunnar Rudolf A1 - Kern, Selina A1 - Brügl, Thomas A1 - Wirth, Christine Clara A1 - Aminake, Makoah Nigel A1 - Wiesner, Jochen A1 - Fischer, Rainer A1 - Vilcinskas, Andreas A1 - Pradel, Gabriele T1 - Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito JF - BMC Genomics N2 - Background: The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results: To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. Conclusions: The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector. KW - parasitophorous vacuole KW - sexual development KW - gametocyte KW - transcriptome KW - signal peptide peptidase KW - host cell interface KW - alpha-tubulin-II KW - life-cycle KW - protein kinases KW - in-vitro KW - erythroyte invation KW - blocking antibodies KW - malaria KW - plasmodium falciparum KW - gametogenesis KW - mosquito KW - transmission Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121905 SN - 1471-2164 VL - 14 IS - 256 ER - TY - JOUR A1 - Mottola, Austin A1 - Schwanfelder, Sonja A1 - Morschhäuser, Joachim T1 - Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion JF - mSphere N2 - The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1 Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1 Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1 Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1 Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1 Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1 Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. KW - Candida albicans KW - Snf1 KW - conditional mutants KW - essential genes KW - protein kinases Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230524 VL - 5 IS - 4 ER - TY - JOUR A1 - Mottola, Austin A1 - Ramírez-Zavala, Bernardo A1 - Hünninger, Kerstin A1 - Kurzai, Oliver A1 - Morschhäuser, Joachim T1 - The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans JF - Molecular Microbiology N2 - The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall. KW - cell wall KW - zinc cluster transcription factor KW - Candida albicans KW - protein kinases Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259583 VL - 116 IS - 2 ER -