TY - JOUR A1 - Neuhoff, Nina A1 - Bruder, Jennifer A1 - Bartling, Jürgen A1 - Warnke, Andreas A1 - Remschmidt, Helmut A1 - Müller-Myhsok, Bertram A1 - Schulte-Körne, Gerd T1 - Evidence for the Late MMN as a Neurophysiological Endophenotype for Dyslexia JF - PLoS One N2 - Dyslexia affects 5-10% of school-aged children and is therefore one of the most common learning disorders. Research on auditory event related potentials (AERP), particularly the mismatch negativity (MMN) component, has revealed anomalies in individuals with dyslexia to speech stimuli. Furthermore, candidate genes for this disorder were found through molecular genetic studies. A current challenge for dyslexia research is to understand the interaction between molecular genetics and brain function, and to promote the identification of relevant endophenotypes for dyslexia. The present study examines MMN, a neurophysiological correlate of speech perception, and its potential as an endophenotype for dyslexia in three groups of children. The first group of children was clinically diagnosed with dyslexia, whereas the second group of children was comprised of their siblings who had average reading and spelling skills and were therefore "unaffected'' despite having a genetic risk for dyslexia. The third group consisted of control children who were not related to the other groups and were also unaffected. In total, 225 children were included in the study. All children showed clear MMN activity to/da/-/ba/ contrasts that could be separated into three distinct MMN components. Whilst the first two MMN components did not differentiate the groups, the late MMN component (300-700 ms) revealed significant group differences. The mean area of the late MMN was attenuated in both the dyslexic children and their unaffected siblings in comparison to the control children. This finding is indicative of analogous alterations of neurophysiological processes in children with dyslexia and those with a genetic risk for dyslexia, without a manifestation of the disorder. The present results therefore further suggest that the late MMN might be a potential endophenotype for dyslexia. KW - processing deficits KW - children KW - event-related potentials KW - mismatch negativity mmn KW - developmental dyslexia KW - reading disability KW - auditory discrimination KW - susceptibility gene KW - speech perception KW - novelty detection Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133686 VL - 7 IS - 5 ER - TY - JOUR A1 - Fernández-Rodríguez, Juana A1 - Quiles, Francisco A1 - Blanco, Ignacio A1 - Teulé, Alex A1 - Feliubadaló, Lídia A1 - del Valle, Jesús A1 - Salinas, Mónica A1 - Izquierdo, Ángel A1 - Darder, Esther A1 - Schindler, Detlev A1 - Capellá, Gabriel A1 - Brunet, Joan A1 - Lázaro, Conxi A1 - Angel Pujana, Miguel T1 - Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families JF - BMC Cancer N2 - Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease. KW - SLX4 KW - Holliday junction reolvass KW - Fanconi-anemia subtype KW - susceptibility gene KW - helicase BRIP1 KW - ovarian cancer KW - DNA repair KW - mutations KW - protein KW - RAD51C Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131772 VL - 12 IS - 84 ER -