TY - THES A1 - Monjezi, Razieh T1 - Engineering of chimeric antigen receptor T cells with enhanced therapeutic index in cancer immunotherapy using non-viral gene transfer and genome editing T1 - Entwicklung chimärer Antigenrezeptor T-Zellen mit verbessertem Therapeutischen Index in der Krebsimmuntherapie durch die Verwendung von nicht-viralen Gentransfer und Genomeditierung N2 - The advances in genetic engineering have enabled us to confer T cells new desired functions or delete their specific undesired endogenous properties for improving their antitumor function. Due to their efficient gene delivery, viral vectors have been successfully used in T-cell engineering to provide gene transfer medicinal products for the treatment of human disease. One example is adoptive cell therapy with T cells that were genetically modified with gamma-retroviral and lentiviral (LV) delivery vectors to express a CD19-specific chimeric antigen receptor (CAR) for cancer treatment. This therapeutic approach has shown remarkable results against B-cell malignancies in pilot clinical trials. Consequently, there is a strong desire to make CAR T cell therapy scalable and globally available to patients. However, there are persistent concerns and limitations with the use of viral vectors for CAR T cell generation with regard to safety, cost and scale of vector production. In order to address these concerns, we aimed to improve non-viral gene transfer and genome editing tools as an effective, safe and broadly applicable alternative to viral delivery methods for T-cell engineering. In the first part of the study, we engineered CAR T cells through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles rather than conventional SB plasmids. This novel approach dramatically increased stable gene transfer rate and cell viability and resulted in higher yield of CAR+ T cells without the need of long ex vivo expansion to generate therapeutic doses of CAR+ T cells. Importantly, CD19-CAR T cells modified by MC-based SB transposition were equally effective as LV transduced CD19-CAR T cells in vitro and in a murine xenograft model (NSG/Raji-ffLuc), where a single administration of CD8+ and CD4+ CAR T cells led to complete eradication of lymphoma and memory formation of CAR T cells after lymphoma clearance. To characterize the biosafety profile of the CAR T cell products, we did the most comprehensive genomic insertion site analysis performed so far in T cells modified with SB. The data showed a close-to-random integration profile of the SB transposon with a higher number of insertions in genomic safe harbors compared to LV integrants. We developed a droplet digital PCR assay that enables rapid determination of CAR copy numbers for clinical applications. In the second part of the study, we ablated expression of PD-1, a checkpoint and negative regulator of T cell function to improve the therapeutic index of CAR T cells. This was accomplished using non-viral CRISPR/Cas9 via pre-assemble Cas9 protein and in vitro-transcribed sgRNA (Cas9 RNP). Finally, we combined our developed Cas9 RNP tool with CAR transposition from MC vectors into a single-step protocol and successfully generated PD-1 knockout CAR+ T cells. Based on the promising results achieved from antibody-mediated PD-1 blockade in the treatment of hematological and solid tumors, we are confident that PD-1 knockout CAR T cells enhance the potency of CAR T cell therapies for treatment of cancers without the side effects of antibody-based therapies. In conclusion, we provide a novel platform for virus-free genetic engineering of CAR T cells that can be broadly applied in T-cell cancer therapy. The high level of gene transfer rate and efficient genome editing, superior safety profile as well as ease-of-handling and production of non-viral MC vectors and Cas9 RNP position our developed non-viral strategies to become preferred approaches in advanced cellular and gene-therapy. N2 - Die Fortschritte des genetischen Engineerings erlauben uns, T-Zellen neue, erwünschte Funktionen zu verleihen oder ihnen bestimmte, unerwünschte endogenen Eigenschaften zu nehmen, um ihre Antitumorfunktion zu verbessern. Aufgrund ihrer Effizienz im Gentransport, werden virale Vektoren für das TZellengineering verwendet, um gentransferierte, medizinische Produkte zur Behandlung humaner Krankheiten herzustellen. Ein Beispiel hierfür ist die adoptive Zelltherapie mit T-Zellen, die mit gamma-retroviralen und lentiviralen (LV) Vektoren genetisch modifiziert wurden, so dass sie einen CD19-spezifischen chimären Antigenrezeptor (CAR) exprimieren. In klinischen Pilotstudien zu B-Zellerkrankungen zeigte dieser therapeutische Ansatz bereits beachtliche Erfolge. Hieraus resultiert das Bestreben, die CAR-T-Zelltherapie für Patienten skalierbar und weltweit zugänglich zu machen. Aufgrund gesundheitlicher Risiken, finanzieller Kosten und dem Umfang der Vektorenproduktion bestehen jedoch anhaltende Bedenken und Grenzen bezüglich der Verwendung viraler Vektoren für die Herstellung von CAR-T-Zellen. Um diese Problematiken zu umgehen, beabsichtigten wir, den nicht-viralen Gentransfer sowie genomverändernde Techniken soweit zu verbessern, dass sie als eine effiziente, sichere und umfassend einsetzbare Alternative zum virusbasierten T-Zellengineering verwendet werden können. Im ersten Teil dieser Arbeit stellten wir durch die Sleeping Beauty (SB) Transposition von CAR-Genen auf minimalistischen DNA Vektoren (sogenannten Minicircles) CART-Zellen her. Die Minicircles wurden anstelle von konventionellen SB Plasmiden verwendet. Mithilfe dieser neuen Vorgehensweise wurden die Rate des stabilen Gentransfers sowie das Überleben der Zellen drastisch erhöht und führte zu einer gesteigerten Rate an CAR+ T-Zellen, ohne dass eine langwierige ex vivo Expansion zur Herstellung therapeutisch relevanter CAR-T-Zelldosen nötig wurde. CD19-CART-Zellen, die mit MC-basierter SB-Transposition modifiziert wurden, zeigten in vitro und in einem murinen Xenograftmodell (NSG/Raji-ffLuc) eine vergleichbar hohe Effizienz, wie LV-transduzierte CD19-CAR-T-Zellen. Hierbei genügte eine einzige Verabreichung von CD4+ und CD8+ CAR-T-Zellen für eine komplette Eliminierung des Lymphoms und der anschließenden Gedächtnisbildung von CAR-T-Zellen. Um die Biosicherheit der CAR-T-Zellprodukte zu charakterisieren, führten wir die bislang umfassendste vergleichende Analyse von Genominsertionsstellen nach SB-basierter Modifikation von T-Zellen durch. Im Vergleich zur LV Integration zeigten diese Daten ein beinahe zufälliges Integrationsmuster des SB Transposons mit höheren Integrationsraten in genomisch „sicheren Häfen“. Wir entwickelten eine Analyse basierend auf digitaler Tröpfchen-PCR, um eine rasche Ermittlung der Anzahl an CAR-Genkopien in klinischen Anwendungen zu ermöglichen. Im zweiten Teil der Arbeit verminderten wir die Expression von PD-1, einer Prüfstelle und negativen Regulator der T-Zellfunktion, um den therapeutischen Index der CART- Zellen zu verbessern. Dies wurde durch die Verwendung eines nicht-viralen CRISPR/Cas9, durch das Zusammensetzen von Cas9 Protein und in vitrotranskribierter sgRNA (Cas9 RNP), erzielt. Schließlich verwendeten wir unsere entwickelte Cas9 RNP-Technik in Kombination mit CAR-Transposition von MCVektoren, um PD-1-knock out, CAR-positive T-Zellen herzustellen. Da die antikörperbasierte PD-1-Blockade in der Behandlung hämatologischer und solider Tumore vielversprechende Ergebnisse zeigt, sind wir zuversichtlich, dass PD-1-knock out CAR-T-Zellen die Effizienz von CAR-T-Zelltherapien verschiedener Krebsarten verbessern können und dabei die Nebenwirkungen der antikörperbasierten Therapien umgehen. Wir zeigen in der vorliegenden Arbeit Möglichkeiten mit virusfreien, gentechnischen Methoden CAR-T-Zellen herzustellen, die in der T-Zellkrebstherapie umfassend Anwendung finden können. Das hohe Level der Gentransferraten und der effizienten Genomeditierung, ein zu bevorzugendes Sicherheitsprofil sowie die einfache Handhabung und Produktion nichtviraler MC-Vektoren und Cas9 RNP machen es möglich, dass unser neuentwickelter, nichtviraler Ansatz zu einer bevorzugten Herangehensweise in der künftigen Zell- und Gentherapie werden kann. KW - Krebs KW - Cancer immunotherapy KW - Immuntherapie KW - T-Lymphozyt KW - Chimeric antigen receptor KW - T-cell therapy KW - T-cell engineering KW - Sleeping Beauty transposon KW - Non-viral genome engineering KW - Genome editing KW - CRISPR/Cas9 KW - Krebsimmuntherapie KW - nicht-viraler Gentransfer KW - Genomeditierung KW - Entwicklung chimärer Antigenrezeptor T-Zellen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152521 ER - TY - THES A1 - Kleffel, Sonja Beate T1 - The role of cancer cell-expressed PD-1 in tumorigenesis and tumor immune evasion T1 - Funktionelle Charakterisierung von Tumorzell-exprimiertem PD-1 in der Karzinogenese und antitumoralen Immunabwehr N2 - Melanoma and Merkel cell carcinoma (MCC) are highly aggressive cancers of the skin that frequently escape immune recognition and acquire resistance to chemotherapeutic agents, which poses a major obstacle to successful cancer treatment. Recently, a new class of therapeutics targeting the programmed cell death-1 (PD-1) immune checkpoint receptor has shown remarkable efficacy in the treatment of both cancers. Blockade of PD-1 on T cells activates cancer-specific immune responses that can mediate tumor regression. The data presented in this Ph.D. thesis demonstrates that PD-1 is also expressed by subsets of cancer cells in melanoma and MCC. Moreover, this work identifies PD-1 as a novel tumor cell-intrinsic growth receptor, even in the absence of T cell immunity. PD-1 is expressed by tumorigenic cell subsets in melanoma patient samples and established human and murine cell lines that also co-express ABCB5, a marker of immunoregulatory tumor- initiating cells in melanoma. Consistently, melanoma-expressed PD-1 downmodulates T effector cell functions and increases the intratumoral frequency of tolerogenic myeloid- derived suppressor cells. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, including in mice lacking adaptive immunity. Engagement of melanoma- PD-1 by its ligand PD-L1 promotes tumor growth, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuates growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor activates mTOR signaling mediators, including ribosomal protein S6. In a proof-of-concept study, tumoral expression of phospho-S6 in pretreatment tumor biopsies correlated with clinical responses to anti-PD-1 therapy in melanoma patients. In MCC, PD-1 is similarly co-expressed by ABCB5+ cancer cell subsets in clinical tumor specimens and established human cell lines. ABCB5 renders MCC cells resistant to the standard-of-care chemotherapeutic agents, carboplatin and etoposide. Antibody-mediated ABCB5 blockade reverses chemotherapy resistance and inhibits tumor xenograft growth by enhancing chemotherapy-induced tumor cell killing. Furthermore, engagement of MCC-expressed PD-1 by its ligands, PD-L1 and PD-L2, promotes proliferation and activates MCC-intrinsic mTOR signaling. Consistently, antibody- mediated PD-1 blockade inhibits MCC tumor xenograft growth and phosphorylation of mTOR effectors in immunocompromised mice. In summary, these findings identify cancer cell-intrinsic functions of the PD-1 pathway in tumorigenesis and suggest that blocking melanoma- and MCC-expressed PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. Additionally, these results establish ABCB5 as a previously unrecognized chemoresistance mechanism in MCC. N2 - Das Melanom und das Merkelzellkarzinom (MZK) sind auttumoren neuroendokrinen Ursprungs, die sich durch ein besonders aggressives Wachstum auszeichnen. Melanome und MZK entgehen häufig der antitumoralen Immunabwehr und erwerben Resistenzen gegen Chemotherapeutika, was eine erfolgreiche Behandlung der betroffenen Patienten erschwert. In klinischen Studien hat eine neue Klasse von therapeutischen Antikörpern, die den Immun-Checkpoint Rezeptor PD-1 (Programmed Cell Death-1) inhibieren, hohe Ansprechraten und dauerhafte Remissionen bei Melanom- und MZK-Patienten erzielt. Die Blockade des PD-1 Rezeptors auf T-Zellen reaktiviert autologe Immunreaktionen gegen Tumorzellen, die zur Reduktion des Tumors führen können. Die vorgelegte Dissertation zeigt, dass Subpopulationen von Melanom- und MZK-Zellen PD-1 exprimieren, und dass die Aktivierung von Tumorzell-intrinsischem PD-1 einen pro-tumorigenen Mechanismus darstellt, einschliesslich in T-Zell-defizienten Mäusen. In Biopsien von Melanom-Patienten, sowie in humanen und murinen Melanom-Zelllinien wird PD-1 präferentiell von tumorigenen, immunregulatorischen, ABCB5+ Melanom-Stammzellen exprimiert. PD-1+ Melanomzellen hemmen die Aktivität von Effektor-T-Zellen und erhöhen die Anzahl der tolerogenen myeloiden Suppressorzellen im Tumor. Die Inhibierung des PD-1 Rezeptors auf Melanomzellen durch RNA-Interferenz, blockierende Antikörper oder Mutagenese der intrazellulären Signalmotive des PD-1 Proteins unterdrückt das Melanom-Wachstum in immunkompetenten, immunsupprimierten und PD-1-defizienten Mäusen. Umgekehrt führt die Melanom-spezifische Überexpression von PD-1 zu einem signifikant erhöhtem Tumorwachstum, sogar in immunsupprimierten Mäusen. Die Aktivierung des PD-1 Rezeptors auf Melanomzellen durch die Bindung seines Liganden, PD-L1, fördert das Tumorwachstum, während das protumorigene Potential von PD-1-positiven Melanomzellen durch die Inhibierung von PD-L1 auf Melanomzellen, sowie in PD-L1-defizienten Mäusen, gehemmt wird. In Melanomzellen aktiviert der PD-1 Rezeptor den mTOR Signaltransduktionsweg, einschließlich des Effektormoleküls ribosomales Protein S6. In einer Teststudie korrelierte die Expression des Phospho-S6 Proteins in Melanomzellen aus Biopsien, die vor Gabe der Immuntherapie entnommen wurden, mit den Ansprechraten der Melanom Patienten auf die Behandlung mit PD-1-Antikörpern. Auch in Biopsien von MZK-Patienten und in etablierten humanen MZK-Zelllinien wird PD-1 präferentiell von ABCB5+ Subpopulationen exprimiert. Im MZK vermittelt der ABCB5-Membrantransporter Resistenzen gegenüber den Zytostatika Carboplatin und Etoposid. Die Antikörper-vermittelte Blockade des ABCB5-Transporters sensibilisiert MZK-Zellen für die Carboplatin- und Etoposid-vermittelte Apoptose, was zu einer signifikanten Reduktion des experimentellen Tumorwachstums führt. Ähnlich wie im Melanom fördert die Bindung des PD-1 Rezeptors auf MZK Zellen durch seine Liganden, PD-L1 und PD-L2, deren Proliferation und die intrazelluläre Aktivierung der mTORSignalkaskade. Entsprechend führt die antikörper-vermittelte Blockade von PD-1 zur Inhibierung des MZK-Tumorwachstums in immunsupprimierten Mäusen und zu einer reduzierten Phosphorylierung von mTOR Effektormolekülen. Zusammenfassend konnte in der vorliegenden Dissertation gezeigt werden, dass Subpopulationen von Melanom- und MZK-Zellen PD-1 exprimieren, und dass Tumorzell-intrinsische PD-1-Funktionen das Krebswachstum fördern. Diese Ergebnisse deuten darauf hin, dass die Blockade des PD-1-Rezeptors auf Tumorzellen zu der klinischen Wirksamkeit der anti-PD-1 Therapie beitragen könnte. Darüber hinaus konnte ABCB5 als neuer Chemoresistenz-Mechanismus in MZK identifiziert werden. KW - Melanom KW - Merkelzellkarzinom KW - Cancer KW - Melanoma KW - Merkel cell carcinoma KW - Cancer immunotherapy KW - Chemotherapeutic resistance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151205 ER -