TY - JOUR A1 - Baptista, Marisa A.P. A1 - Keszei, Marton A1 - Oliveira, Mariana A1 - Sunahara, Karen K.S. A1 - Andersson, John A1 - Dahlberg, Carin I.M. A1 - Worth, Austen J. A1 - Liedén, Agne A1 - Kuo, I-Chun A1 - Wallin, Robert P.A. A1 - Snapper, Scott B. A1 - Eidsmo, Liv A1 - Scheynius, Annika A1 - Karlsson, Mikael C.I. A1 - Bouma, Gerben A1 - Burns, Siobhan O. A1 - Forsell, Mattias N.E. A1 - Thrasher, Adrian J. A1 - Nylén, Susanne A1 - Westerberg, Lisa S. T1 - Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells JF - Nature Communications N2 - Wiskott–Aldrich syndrome (WAS) is caused by loss-of-function mutations in theWASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8þ T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNg-producing CD8þ T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8þ T cells at the expense of CD4þ T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8þ T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. KW - Cell signalling KW - Dendritic cells KW - Disease genetics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165966 VL - 7 ER - TY - JOUR A1 - Lutz, Manfred B. A1 - Heuer, Marion A1 - Behlich, Anna-Sophie A1 - Lee, Ji-Sook A1 - Ribechini, Eliana A1 - Jo, Eun-Kyeong T1 - The 30-kDa and 38-kDa antigens from Mycobacterium tuberculosis induce partial maturation of human dendritic cells shifting CD4+ T cell responses towards IL-4 production JF - BMC Immunology N2 - Background Mycobacterium tuberculosis (Mtb) infections are still a major cause of death among all infectious diseases. Although 99% of individuals infected with Mtb develop a CD4+ Th1 and CD8+ T cell mediated immunity as measured by tuberculin skin test, this results only in partial protection and Mtb vaccines are not effective. Deviation of immune responses by pathogens towards a Th2 profile is a common mechanism of immune evasion, typically leading to the persistence of the microbes. Results Here we tested the stimulatory capacity of selective Mtb antigens on human monocyte-derived dendritic cell (DC) maturation and cytokine production. DC maturation markers CD80, CD86 and CD83 were readily upregulated by H37Ra- and H37Rv-associated antigens, the 30-kDa (from Ag85 B complex) and 38-KDa Mtb antigens only partially induced these markers. All Mtb antigens induced variable levels of IL-6 and low levels of IL-10, there was no release of IL-12p70 detectable. Substantial IL-12p40 production was restricted to LPS or H37Ra and H37Rv preparations. Although the proliferation levels of primary T cell responses were comparable using all the differentially stimulated DC, the 30-kDa and 38-kDa antigens showed a bias towards IL-4 secretion of polarized CD4+ T cells after secondary stimulation as compared to H37Ra and H37Rv preparations. Conclusion Together our data indicate that 30-kDa and 38-kDa Mtb antigens induced only partial DC maturation shifting immune responses towards a Th2 profile. KW - Dendritic cells KW - Mycobacterium tuberculosis KW - T helper cell responses Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96871 UR - http://www.biomedcentral.com/1471-2172/14/48 ER -