TY - JOUR A1 - Würthner, Frank A1 - Noll, Niklas T1 - A Calix[4]arene‐Based Cyclic Dinuclear Ruthenium Complex for Light‐Driven Catalytic Water Oxidation JF - Chemistry - A European Journal N2 - A cyclic dinuclear ruthenium(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) complex equipped with oligo(ethylene glycol)‐functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{−1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water‐soluble WOC for artificial photosynthesis. KW - water KW - oxidation KW - ruthenium KW - dinuclear KW - catalytic KW - artificial photosynthesis KW - homogenous catalysis KW - photocatalysis KW - ruthenium complexes KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230030 UR - https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202004486 VL - 27 IS - 1 ER - TY - JOUR A1 - Lenczyk, Carsten A1 - Roy, Dipak Kumar A1 - Oberdorf, Kai A1 - Nitsch, Jörn A1 - Dewhurst, Rian D. A1 - Radacki, Krzysztof A1 - Halet, Jean-François A1 - Marder, Todd B. A1 - Bickelhaupt, Matthias A1 - Braunschweig, Holger T1 - Toward Transition‐Metal‐Templated Construction of Arylated B\(_{4}\) Chains by Dihydroborane Dehydrocoupling JF - Chemistry - A European Journal N2 - The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH\(_{2}\)] (Dur=2,3,5,6‐Me\(_{4}\)C\(_{6}\)H) and [(Me\(_{3}\)Si)\(_{2}\)NBH\(_{2}\)] led to the formation of bridging borylene complexes of the form [(Cp\(^{*}\)RuH)\(_{2}\)BR] (Cp\(^{*}\)=C\(_{5}\)Me\(_{5}\); 1 a: R=Dur; 1 b: R=N(SiMe\(_{3}\))\(_{2}\)) through oxidative addition of the B−H bonds with concomitant hydrogen liberation. Employing the more electron‐deficient dihydroborane [3,5‐(CF\(_{3}\))\(_{2}\)‐C\(_{6}\)H\(_{3}\)BH\(_{2}\)] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)\(_{4}\)[(Cp\(^{*}\)Ru)\(_{2}\)B\(_{4}\)H\(_{5}\)(3,5‐(CF\(_{3}\))\(_{2}\)C\(_{6}\)H\(_{3}\))\(_{4}\)] (4), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido‐[1,2(Cp\(^{*}\)Ru)\(_{2}\)(μ‐H)B\(_{4}\)H\(_{9}\)] (I) indicates that there appear to be no classical σ‐bonds between the boron atoms in complex I, whereas in the case of 4 the B\(_{4}\) chain better resembles a network of three B−B σ bonds, the central bond being significantly weaker than the other two. KW - transition metal KW - B−H activation KW - boron KW - dehydrocoupling KW - ruthenium Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214324 VL - 25 IS - 72 ER -