TY - JOUR A1 - Biere, Silvia A1 - Kranz, Thorsten M. A1 - Matura, Silke A1 - Petrova, Kristiyana A1 - Streit, Fabian A1 - Chiocchetti, Andreas G. A1 - Grimm, Oliver A1 - Brum, Murielle A1 - Brunkhorst-Kanaan, Natalie A1 - Oertel, Viola A1 - Malyshau, Aliaksandr A1 - Pfennig, Andrea A1 - Bauer, Michael A1 - Schulze, Thomas G. A1 - Kittel-Schneider, Sarah A1 - Reif, Andreas T1 - Risk Stratification for Bipolar Disorder Using Polygenic Risk Scores Among Young High-Risk Adults JF - Frontiers in Psychiatry N2 - Objective: Identifying high-risk groups with an increased genetic liability for bipolar disorder (BD) will provide insights into the etiology of BD and contribute to early detection of BD. We used the BD polygenic risk score (PRS) derived from BD genome-wide association studies (GWAS) to explore how such genetic risk manifests in young, high-risk adults. We postulated that BD-PRS would be associated with risk factors for BD. Methods: A final sample of 185 young, high-risk German adults (aged 18–35 years) were grouped into three risk groups and compared to a healthy control group (n = 1,100). The risk groups comprised 117 cases with attention deficit hyperactivity disorder (ADHD), 45 with major depressive disorder (MDD), and 23 help-seeking adults with early recognition symptoms [ER: positive family history for BD, (sub)threshold affective symptomatology and/or mood swings, sleeping disorder]. BD-PRS was computed for each participant. Logistic regression models (controlling for sex, age, and the first five ancestry principal components) were used to assess associations of BD-PRS and the high-risk phenotypes. Results: We observed an association between BD-PRS and combined risk group status (OR = 1.48, p < 0.001), ADHD diagnosis (OR = 1.32, p = 0.009), MDD diagnosis (OR = 1.96, p < 0.001), and ER group status (OR = 1.7, p = 0.025; not significant after correction for multiple testing) compared to healthy controls. Conclusions: In the present study, increased genetic risk for BD was a significant predictor for MDD and ADHD status, but not for ER. These findings support an underlying shared risk for both MDD and BD as well as ADHD and BD. Improving our understanding of the underlying genetic architecture of these phenotypes may aid in early identification and risk stratification. KW - polygenic risk score KW - bipolar disorder KW - genetic phenotypes KW - depression KW - ADHD KW - early recognition Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214976 VL - 11 ER - TY - JOUR A1 - Palladino, Viola Stella A1 - Chiocchetti, Andreas G. A1 - Frank, Lukas A1 - Haslinger, Denise A1 - McNeill, Rhiannon A1 - Radtke, Franziska A1 - Till, Andreas A1 - Haupt, Simone A1 - Brüstle, Oliver A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Hoffmann, Per A1 - Reif, Andreas A1 - Kittel-Schneider, Sarah T1 - Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD JF - Journal of Clinical Medicine N2 - The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics. KW - ADHD KW - hiPSC KW - PARK2 KW - mitochondria KW - disease modelling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220074 SN - 2077-0383 VL - 9 IS - 12 ER -