TY - JOUR A1 - Mainz, Laura A1 - Sarhan, Mohamed A. F. E. A1 - Roth, Sabine A1 - Sauer, Ursula A1 - Maurus, Katja A1 - Hartmann, Elena M. A1 - Seibert, Helen-Desiree A1 - Rosenwald, Andreas A1 - Diefenbacher, Markus E. A1 - Rosenfeldt, Mathias T. T1 - Autophagy blockage reduces the incidence of pancreatic ductal adenocarcinoma in the context of mutant Trp53 JF - Frontiers in Cell and Developmental Biology N2 - Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53\(^{R172H}\)) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis. KW - pancreatic cancer KW - autophagy KW - p53 KW - metastasis KW - ATG7 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266005 SN - 2296-634X VL - 10 ER - TY - JOUR A1 - Rosenfeldt, Mathias T. A1 - Hartmann, Elena M. A1 - Leng, Corinna A1 - Rosenwald, Andreas A1 - Anagnostopoulos, Ioannis T1 - A case of nodular lymphocyte predominant Hodgkin lymphoma with unexpected EBV-latency type JF - Annals of Hematology N2 - No abstract available. KW - nodular lymphcyte KW - Hodgkin lymphoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232571 SN - 0939-5555 VL - 100 ER - TY - JOUR A1 - Benkert, Thomas F. A1 - Dietz, Lena A1 - Hartmann, Elena M. A1 - Leich, Ellen A1 - Rosenwald, Andreas A1 - Serfling, Edgar A1 - Buttmann, Mathias A1 - Berberich-Siebelt, Friederike T1 - Natalizumab Exerts Direct Signaling Capacity and Supports a Pro-Inflammatory Phenotype in Some Patients with Multiple Sclerosis N2 - Natalizumab is a recombinant monoclonal antibody raised against integrin alpha-4 (CD49d). It is approved for the treatment of patients with multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the CNS. While having shown high therapeutic efficacy, treatment by natalizumab has been linked to progressive multifocal leukoencephalopathy (PML) as a serious adverse effect. Furthermore, drug cessation sometimes induces rebound disease activity of unknown etiology. Here we investigated whether binding of this adhesion-blocking antibody to T lymphocytes could modulate their phenotype by direct induction of intracellular signaling events. Primary CD4+ T lymphocytes either from healthy donors and treated with natalizumab in vitro or from MS patients receiving their very first dose of natalizumab were analyzed. Natalizumab induced a mild upregulation of IL-2, IFN-c and IL-17 expression in activated primary human CD4+ T cells propagated ex vivo from healthy donors, consistent with a pro-inflammatory costimulatory effect on lymphokine expression. Along with this, natalizumab binding triggered rapid MAPK/ERK phosphorylation. Furthermore, it decreased CD49d surface expression on effector cells within a few hours. Sustained CD49d downregulation could be attributed to integrin internalization and degradation. Importantly, also CD4+ T cells from some MS patients receiving their very first dose of natalizumab produced more IL-2, IFN-c and IL-17 already 24 h after infusion. Together these data indicate that in addition to its adhesion-blocking mode of action natalizumab possesses mild direct signaling capacities, which can support a pro-inflammatory phenotype of peripheral blood T lymphocytes. This might explain why a rebound of disease activity or IRIS is observed in some MS patients after natalizumab cessation. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77905 ER -