TY - JOUR A1 - Isaias, Ioannis U. A1 - Trujillo, Paula A1 - Summers, Paul A1 - Marotta, Giorgio A1 - Mainardi, Luca A1 - Pezzoli, Gianni A1 - Zecca, Luigi A1 - Costa, Antonella T1 - Neuromelanin Imaging and Dopaminergic Loss in Parkinson's Disease JF - Frontiers in Aging Neuroscience N2 - Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease. KW - MRI KW - neuromelanin KW - dopamine KW - Parkinson's disease KW - FP-CIT SPECT Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164046 VL - 8 IS - 196 ER - TY - JOUR A1 - Dipaola, Mariangela A1 - Pavan, Esteban E. A1 - Cattaneo, Andrea A1 - Frazzitta, Giuseppe A1 - Pezzoli, Gianni A1 - Cavallari, Paolo A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Mechanical Energy Recovery during Walking in Patients with Parkinson Disease JF - PLoS ONE N2 - The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their ‘preferred’ and ‘slow’ speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (W\(_{p}\)), total (W\(_{totCM}\)) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of W\(_{totCM}\) and W\(_{p}\) with knee ROM and in particular with knee extension in terminal stance phase. W\(_{k}\) and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both W\(_{p}\) and W\(_{totCM}\). Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components. KW - Parkinson disease KW - mechanical energy KW - kinematics KW - velocity KW - hip KW - gait analysis KW - walking KW - knees Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179739 VL - 11 IS - 6 ER - TY - JOUR A1 - Canesi, Margherita A1 - Giordano, Rosaria A1 - Lazzari, Lorenza A1 - Isalberti, Maurizio A1 - Isaias, Ioannis Ugo A1 - Benti, Riccardo A1 - Rampini, Paolo A1 - Marotta, Giorgio A1 - Colombo, Aurora A1 - Cereda, Emanuele A1 - Dipaola, Mariangela A1 - Montemurro, Tiziana A1 - Vigano, Mariele A1 - Budelli, Silvia A1 - Montelatici, Elisa A1 - Lavazza, Cristiana A1 - Cortelezzi, Agostino A1 - Pezzoli, Gianni T1 - Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy JF - Journal of Translational Medicine N2 - Background: The trophic, anti-apoptotic and regenerative effects of bone marrow mesenchymal stromal cells (MSC) may reduce neuronal cell loss in neurodegenerative disorders. Methods: We used MSC as a novel candidate therapeutic tool in a pilot phase-I study for patients affected by progressive supranuclear palsy (PSP), a rare, severe and no-option form of Parkinsonism. Five patients received the cells by infusion into the cerebral arteries. Effects were assessed using the best available motor function rating scales (UPDRS, Hoehn and Yahr, PSP rating scale), as well as neuropsychological assessments, gait analysis and brain imaging before and after cell administration. Results: One year after cell infusion, all treated patients were alive, except one, who died 9 months after the infusion for reasons not related to cell administration or to disease progression (accidental fall). In all treated patients motor function rating scales remained stable for at least six-months during the one-year follow-up. Conclusions: We have demonstrated for the first time that MSC administration is feasible in subjects with PSP. In these patients, in whom deterioration of motor function is invariably rapid, we recorded clinical stabilization for at least 6 months. These encouraging results pave the way to the next randomized, placebo-controlled phase-II study that will definitively provide information on the efficacy of this innovative approach. KW - Progressive supranuclear palsy KW - Mesenchymal stem/stromal cells KW - Cell therapy KW - Regenerative medicine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165725 VL - 14 IS - 127 ER - TY - JOUR A1 - Canessa, Andrea A1 - Pozzi, Nicolò G. A1 - Arnulfo, Gabriele A1 - Brumberg, Joachim A1 - Reich, Martin M. A1 - Pezzoli, Gianni A1 - Ghilardi, Maria F. A1 - Matthies, Cordula A1 - Steigerwald, Frank A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease JF - Frontiers in Human Neuroscience N2 - Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson’s disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement. KW - beta oscillations KW - Parkinson’s disease KW - motor control KW - movement disorders KW - imaging KW - subthalamic nucleus KW - coherence analysis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164061 VL - 10 IS - 611 ER -