TY - THES A1 - Brandt, Sönke T1 - Metamorphic evolution of ultrahigh-temperature granulite facies and upper amphibolite facies rocks of the Epupa Complex, NW Namibia T1 - Metamorphe Entwicklung von ultrahochtemperatur-granulitfaziellen und amphibolitfaziellen Gesteinen des Epupa-Komplexes, NW Namibia N2 - The high-grade metamorphic Epupa Complex (EC) of north-western Namibia constitutes the south-western margin of the Archean to Proterozoic Congo Craton. The north-eastern portion of the EC has been geochemically and petrologically investigated in order to reconstruct its tectono-metamorphic evolution. Two distinct metamorphic units have been recognized, which are separated by ductile shear zones: (1) Upper amphibolite facies rocks (Orue Unit) and (2) ultrahigh-temperature (UHT) granulite facies rocks (Epembe Unit). The rocks of the EC are transsected by a large anorthosite massif, the Kunene Intrusive Complex (KIC). The Orue Unit and the Epembe Unit were affected by two distinct Mesoproterozoic metamorphic events, as is evident from differences in their metamorphic grade, in the P-T paths and in the age of peak-metamorphism: (1) The Orue Unit consists of a Palaeoproterozoic volcano-sedimentary sequence, which was intruded by large masses of I-type granitoids and by rare mafic dykes. During the Mesoproterozoic (1390-1318 Ma) the Orue Unit rocks underwent upper amphibolite facies metamorphism. The volcano-sedimentary sequence is constituted by interlayered basaltic amphibolites and rhyolitic felsic gneisses, with intercalations of migmatitic metagreywackes, migmatitic metapelites, metaarkoses and calc-silicate rocks. The Orue Unit was subdivided into three parts, which record similar heating-cooling paths but represent individual crustal levels: Heating led to the partial replacement of amphibole, biotite and muscovite through dehydration melting reactions. The peak-metamorphic P-T conditions of c. 700°C, 6.5 +/- 1.0 kbar (south-eastern part), c. 820°C, 8 +/- 0.5 kbar (south-western part) and c. 800°C, 6.0 +/- 1.0 kbar (northern part) correlate well with the mineral assemblage in the metapelites, i.e. Grt-Bt-Sil gneisses and schist in the south-eastern and south-western region and (Grt-)Crd-Bt gneisses in the northern part. Peak-metamorphism was followed by retrograde cooling to middle amphibolite facies conditions. Contact metamorphism, related with the intrusion of the anorthosites, is restricted to the direct contact to the KIC and recorded by massive metapelitic Grt-Sil-Crd felses, formed under upper amphibolite facies conditions (c. 750°C, c. 6.5 kbar). (2) The Epembe Unit consists of a Palaeoproterozoic volcano-sedimentary succession, which was intruded by small bodies of S-type granitoids and by andesitic dykes. All these rocks underwent UHT granulite facies metamorphism during the early Mesoproterozoic (1520-1447 Ma). The volcano-sedimentary succession is dominated by interlayered basaltic two-pyroxene granulites and rhyolitic felsic granulites. Migmatitic metapelites and metagreywackes are intercalated in the metavolcanites. Sapphirine-bearing MgAl-rich gneisses occur as restitic schlieren in the migmatitic metagreywackes. Reconstructed anti-clockwise P-T paths are subdivided into several distinct stages: During prograde near-isobaric heating to UHT conditions at c. 7 kbar biotite- or hornblende-bearing mineral assemblages were almost completely replaced by anhydrous mineral assemblages through various dehydration melting reactions. A subsequent pressure increase of 2-3 kbar led to the formation of the peak-metamorphic mineral assemblages Grt-Opx and (Grt-)Opx-Cpx in the orthogneisses and Grt-Opx, Grt-Sil and (Grt-)(Spr-)Opx-Sil-Qtz in the paragneisses. UHT-Metamorphism is proved by conventional geothermobarometry (970 +/- 70°C; 9.5 +/- 2.5 kbar), by the very high Al content of peak-metamorphic orthopyroxene (up to 11.9 wt.% Al2O3) in many paragneisses and by Opx-Sil-Qtz assemblages in the MgAl-rich gneisses. Post-peak decompression is recorded by several corona and symplectite textures, formed at the expense of the peak-metamorphic phases: Initial UHT decompression of about ca. 2 kbar to 940 +/- 60°C at 8 +/- 2 kbar is mainly evident from the formation of sapphirine-bearing symplectites in the Opx-Sil gneisses. Subsequent high-temperature decompression to 6 +/- 2 kbar at 800 +/- 60°C resulted in the formation of Crd-Opx-Spl, Crd-Opx and Spl-Crd symplectites. Subsequent near-isobaric cooling to upper amphibolite conditions of 660 +/- 30°C at 5 +/- 1.5 kbar led to the re-growth of biotite, hornblende, sillimanite and garnet. During continued decompression orthopyroxene and cordierite were formed at the expense of biotite in several paragneisses. In a geodynamic model UHT metamorphism of the Epembe Unit is correlated with the formation of a large magma chamber at the mantle-crust boundary, which forms the source for the anorthosites of the KIC. In contrast, amphibolite facies metamorphism of the Orue Unit is ascribed to a regional contact metamorphic event, caused by the emplacement of the anorthositic crystal mushes in the middle crust. N2 - Epupa-Komplex (EK) Nordwest-Namibias bildet den südwestlichen Rand des archaischen bis proterozoischen Kongo-Kratons. Der nordöstliche Teil des EK wurde geochemisch und petrologisch untersucht, um seine tektono-metamorphe Entwicklung zu rekonstruieren. Hierbei wurden zwei unterschiedliche metamorphe Einheiten erkannt, die durch duktile Scherzonen getrennt sind: (1) Gesteine der oberen Amphibolitfazies (Orue-Einheit) und (2) Ultrahochtemperatur (UHT)-granulitfazielle Gesteine (Epembe-Einheit). Die Gesteine des EK werden von einem gewaltigen Anorthosit-Massiv, dem Kunene-Intrusiv-Komplex (KIK), durchschlagen. Unterschiede im Metamorphosegrad, in den P-T Pfaden und den Metamorphose-Altern belegen, dass die Orue-Einheit und die Epembe-Einheit von zwei unterschiedlichen mesoproterozoischen Metamorphosen erfasst wurden: (1) Die Orue-Einheit setzt sich aus einer paläoproterozoischen vulkano-sedimentären Abfolge zusammen, die von I-Typ Granitoiden und Basaltgängen intrudiert wurde. Während des Mesoproterozoikums (1390-1318 Ma) wurde die Orue-Einheit unter Bedingungen der oberen Amphibolitfazies metamorph überprägt. Die vulkano-sedimentäre Abfolge wird von einer Wechsellagerung von basaltischen Amphiboliten und rhyolitischen felsischen Gneisen aufgebaut, in die migmatitische Metagrauwacken, migmatitische Metapelite, Metaarkosen und Kalksilikate eingeschaltet sind. Die Orue-Einheit wurde in drei Regionen untergliedert, die ähnliche Aufheizungs-Abkühlungs-Pfade aufweisen, aber unterschiedliche Krustenbereiche repräsentieren: Aufheizung führte zur partiellen Verdrängung von Amphibol, Biotit und Muskovit durch Dehydratations-Schmelz-Reaktionen. Die höchstgradigen P-T Bedingungen von ca. 700°C, 6.5 +/- 1.0 kbar (südöstlicher Teil), ca. 820°C, 8 +/- 0.5 kbar (südwestlicher Teil) und ca. 800°C, 6.0 +/- 1.0 kbar (nördlicher Teil) stimmen mit den jeweiligen Mineralparagenesen der Metapelite überein (Grt-Bt-Sil-Gneise und –Schiefer im südöstlichen und –westlichen Teil und (Grt-)Crd-Bt-Gneise im nördlichen Teil). Abkühlung erfolgte unter Bedingungen der mittleren Amphibolitfazies. Kontaktmetamorphose, verbunden mit der Intrusion der Anorthosite, ist auf den direkten Kontaktbereich zum KIK beschränkt und durch undeformierte metapelitische Grt-Sil-Crd Felse überliefert, die unter Bedingungen der oberen Amphibolitfazies (ca. 750°C, ca. 6.5 kbar) gebildet wurden. (2) Die Epembe-Einheit besteht aus einer paläoproterozoischen vulkano-sedimentären Abfolge, die von kleinvolumigen S-Typ Granitoiden und Andesitgängen intrudiert wurde. Die Gesteine wurden im frühen Mesoproterozoikum (1520-1447 Ma) von einer UHT-granulitfaziellen Metamorphose erfasst. Die vulkano-sedimentäre Abfolge wird durch wechsellagernde basaltische Zwei-Pyroxen Granulite und rhyolitische felsische Granulite dominiert. Migmatitische Metapelite und Metagrauwacken sind in die Metavulkanite eingeschaltet. Sapphirin-führende MgAl-reiche Gneise treten als restititische Schlieren in den migmatitischen Metagrauwacken auf. Die rekonstruierten P-T Pfade verlaufen entgegen des Uhrzeigersinnes und sind in mehrere Stufen gegliedert: Während annähernd isobarer Aufheizung zu UHT-Bedingungen bei ca. 7 kbar wurden Biotit- und Hornblende-führende Mineralparagenesen weitgehend oder vollständig im Zuge von Dehydratations-Schmelzreaktionen verdrängt. Ein anschließender Druck-Anstieg um 2-3 kbar führte zur Bildung der höchstgradigen Mineralparagenesen Grt-Opx und (Grt-)Opx-Cpx in den Orthogneisen und Grt-Opx, Grt-Sil und (Grt-)(Spr-)Opx-Sil-Qtz in den Paragneisen. UHT-Metamorphose ist durch konventionelle Geothermobarometrie (970 +/- 70°C; 9.5 +/- 2.5 kbar), den sehr hohen Al-Gehalt von höchstgradigem Orthopyroxen (bis zu 11.9 Gew.% Al2O3) in zahlreichen Paragneisen und die Paragenese Opx-Sil-Qtz in den MgAl-reichen Gneisen belegt. Anschließende Dekompression ist durch zahlreiche Korona- und Symplektit-Gefüge um die höchstgradigen Minerale überliefert. Initiale UHT-Dekompression um ca. 2 kbar (940 +/- 60°C; 8 +/- 2 kbar) ist hauptsächlich durch Sapphirin-führende Symplektite in den MgAl-reichen Gneisen belegt. Anhaltende Dekompression unter granulitfaziellen Bedingungen (800 +/- 60°C; 6 +/- 2 kbar) führte zur Bildung von Crd-Opx-Spl, Crd-Opx und Spl-Crd Symplektiten. Anschließende annähernd isobare Abkühlung zu Bedingungen der oberen Amphibolitfazies (660 +/- 30°C; 5 +/- 1.5 kbar) führte zum Wiederwachstum von Biotit, Hornblende, Sillimanit und Granat. Während anhaltender Dekompression wurde in den Paragneisen Orthopyroxen und Cordierit auf Kosten von Biotit gebildet. In einem geodynamischen Model wird die UHT-Metamorphose wird mit der Bildung einer Magmenkammer an der Kruste-Mantel-Grenze in Zusammenhang gebracht, welche zugleich die Magmenquelle für die Anorthosite des KIK darstellt. Die amphibolitfazielle Metamorphose der Orue-Einheit wird dagegen mit einer regionalen Kontaktmetamorphose während der Platznahme der anorthositischen Magmen in Verbindung gebracht. KW - Namibia KW - Granulit KW - Metamorphose KW - Namibia KW - Petrologie KW - Metamorphose KW - Granulite KW - Epupa-Komplex KW - Namibia KW - Petrology KW - Metamorphism KW - Granulite KW - Epupa Complex Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10930 ER - TY - THES A1 - Drüppel, Kirsten T1 - Petrogenesis of the Mesoproterozoic anorthosite, syenite and carbonatite suites of NW Namibia and their contribution to the metasomatic formation of the Swartbooisdrif sodalite deposits T1 - Petrogenese der mesoproterozoischen Anorthosite, Syenite und Karbonatite NW-Namibias und ihr Einfluss auf die metasomatische Bildung der Sodalith-Vorkommen von Swartbooisdrif N2 - During the Mesoproterozoic large volumes of magma were repeatedly emplaced within the basement of NW Namibia. Magmatic activity started with the intrusion of the anorthositic rocks of the Kunene Intrusive Complex (KIC) at 1,385-1,347 Ma. At its south-eastern margin the KIC was invaded by syenite dykes (1,380-1,340 Ma) and younger carbonatites (1,140-1,120 Ma) along ENE and SE trending faults. Older ferrocarbonatite intrusions, the ‘carbonatitic breccia’, frequently contain wallrock fragments, whereas subordinate ferrocarbonatite veins are almost xenolith-free. Metasomatic interaction between carbonatite-derived fluids and the neighbouring and incorporated anorthosites led to the formation of economically important sodalite deposits. Investigated anorthosite samples display the magmatic mineral assemblage of Pl (An37-75) ± Ol ± Opx ± Cpx + Ilm + Mag + Ap ± Zrn. Ilmenite and pyroxene are surrounded by narrow reaction rims of biotite and pargasite. During the subsolidus stage sporadic coronitic garnet-orthopyroxene-quartz assemblages were produced. Thermobarometry studies on amphiboles yield temperatures of 985-950°C whereas the chemical composition of coronitic garnet and orthopyroxene indicate a subsolidus re-equilibration of the KIC at conditions of 760 ± 100°C and 7.3 ± 1 kbar. In the syenites Kfs, Pl, Hbl and/or Cpx crystallized first, followed by a second generation of Kfs, Hbl, Fe-Ti oxides and Ttn. Crystallization of potassium feldspar occurred under temperatures of 890-790°C. For the crystallization of hastingsite pressures of 6.5 ± 0.6 kbar are obtained. In order to constrain the source rocks of the two suites, oxygen isotope analyses of feldspar as well as geochemical bulk rock analyses were carried out. In case of the anorthosites, the general geochemical characteristics are in excellent agreement with their derivation from fractionated basaltic liquids, with the d18O values (5.88 ± 0.19 ‰) proving their derivation from mantle-derived magmas. The results obtained for the felsic suite, provide evidence against consanguinity of the anorthosites and the syenites, i.e. (1) compositional gaps between the geochemical data of the two suites, (2) trace element data of the felsic suite points to a mixed crustal-mantle source, (3) syenites do not exhibit ubiquitous negative Eu-anomalies in their REE patterns, which would be expected from fractionation products of melts that previously formed plagioclase cumulates and (4) feldspar d18O values from the syenites fall in a range of 7.20-7.92 ‰, which, however, is about 1.6 ‰ higher than the average d18O of the anorthosites. Conformably, the crustal-derived felsic and the mantle-derived anorthositic suite are suggested to be coeval but not consanguineous. Their spatial and temporal association can be accounted for, if the heat necessary for crustal melting is provided by the upwelling and emplacement of mantle-derived melts, parental to the anorthosites. In order to constrain the source of the 1,140-1,120 Ma carbonatites and to elucidate the fenitizing processes, which led to the formation of the sodalite, detailed mineralogical and geochemical investigations, stable isotope (C,O,S) analyses and fluid inclusion measurements (microthermometrical studies and synchrotron-micro-XRF analyses) have been combined. There is striking evidence that carbonatites of both generations are magmatic in origin. They occur as dykes with cross-cutting relationships and margins disturbed by fenitic aureoles, and contain abundant flow-oriented xenoliths. The mineral assemblage of both carbonatite generations of Ank + Cal + Ilm + Mag + Bt ± Ap ± pyrochlore ± sulphides in the main carbonatite body and Ank + Cal + Mag ± pyrochlore ± rutile in the ferrocarbonatite veins, their geochemical characteristics and the O and C isotope values of ankerite (8.91 to 9.73 and –6.73 to –6.98, respectively) again indicate igneous derivation, with the 18O values suggesting minor subsolidus alteration. NaCl-rich fluids, released from the carbonatite melt mainly caused the fenitization of both, the incorporated and the bordering anorthosite. This process is characterized by the progressive transformation of Ca-rich plagioclase into albite and sodalite. Applying conventional geothermobarometry combined with fluid-inclusion isochore data, it was possible to reconstruct the P-T conditions for the carbonatite emplacement and crystallization (1200-630°C, 4-5 kbar) and for several mineral-forming processes during metasomatism (e.g. formation of sodalite: 800-530°C). The composition and evolutionary trends of the fenitizing solution were estimated from both the sequence of metasomatic reactions within wallrock xenoliths in the carbonatitic breccia and fluid inclusion data. The fenitizing solutions responsible for the transformation of albite into sodalite can be characterised as of NaCl-rich aqueous brines (19-30 wt.% NaCl eq.), that contained only minor amounts of Sr, Ba, Fe, Nb, and LREE. N2 - Die mesoproterozoische Entwicklung Namibias ist durch wiederholte magmatische Aktivität gekennzeichnet. Zunächst erfolgte vor 1385-1347 Ma die Platznahme von Anorthositen des Kunene-Intrusiv-Komplexes (KIK) innerhalb von hochgradig metamorphen Gesteinen des Epupa-Komplexes. Der KIK wurde nahe seiner südöstlichen Begrenzung von zahlreichen Störungen durchschlagen. In diese SE-NW und ENE-WSW streichenden Schwächezonen intrudierten Syenite (ca. 1380-1340 Ma) sowie jüngere Karbonatite (ca. 1140-1120 Ma). Hierbei erfolgte zunächst die Platznahme einer ersten Ferrokarbonatit-Generation, die in hohem Maße durch Anorthosit-Xenolithe kontaminiert ist („karbonatitische Brekzie“). Diese wird von jüngeren und annähernd Xenolith-freien Ferrokarbonatit-Adern durchschlagen. Metasomatische Wechselwirkungen den Karbonatit-Magmen und angrenzenden Anorthositen und Anorthosit-Xenolithen führten zur Bildung ökonomisch bedeutsamer Sodalith-Vorkommen. Die typische primär-magmatische Mineralogie in den Gesteinen des KIK umfasst: Pl (An37-75) ± Ol ± Opx ± Cpx + Fe-Ti-Oxide + Ap ± Zrn. Säume von Amphibol und Biotit umgeben Pyroxen und Ilmenit. Geothermometrische Untersuchungen ergaben Temperaturen von 985-950°C für die Kristallisation von Amphibol. Eine Reequilibrierung der Anorthosite unter granulit- bis amphibolitfaziellen Bedingungen (760 ± 100°C; 7.3 ± 1 kbar) wurde für Orthopyroxen-Granat-Quarz-Koronen um Olivin festgestellt. In den Syeniten kristallisierten zunächst Kfs, Pl, Cpx und Hbl, gefolgt von einer zweiten Generation von Kfs, Hbl, Fe-Ti-Oxiden und Ttn. Die Kristallisation von K-Feldspat fand unter Temperaturbedingungen von 890-790°C statt. Für die Kristallisation von Hastingsit wurden Drucke von 6.5 ± 0.6 kbar ermittelt. Mit dem Ziel, die Natur der Magmenquelle der Anorthosite und Syenite zu charakterisieren wurden geochemische Untersuchungen durchgeführt, sowie die Sauerstoff-Isotopie von Feldspat-Separaten bestimmt. Die Ergebnisse dieser Untersuchungen belegen, dass es sich bei den Stamm-Magmen der Anorthosite um fraktionierte basaltische Magmen handelt. Die d18O-Daten (5.61-6.13 ‰) legen nahe, dass diese Schmelzen durch partielle Aufschmelzung des Erdmantels entstanden sind. Die für die Syenite ermittelten Ergebnisse belegen, dass es sich bei Anorthositen und Syeniten um chemisch unabhängige Systeme handelt, da (1) keine chemische Kontinuität zwischen Anorthositen und Syeniten vorliegt, (2) die Spurenelementgehalte der Syenite auf eine gemischte Kruste-Mantel-Quelle hindeuten, (3) Chondrit-normierte Seltenerd-Element-Muster der Syenite keine negative Eu-Anomalie aufweisen, und (4) die d18O-Werte von Feldspat der Syenite mit 7.20-7.92 ‰ etwa 1.6 ‰ höher liegen als die der Anorthosite. Dementsprechend liegt die enge räumliche und zeitliche Assoziation von Anorthosite und Syeniten vermutlich darin begründet, dass der Aufstieg und die Platznahme der Stamm-Magmen der Anorthosite zum partiellen Aufschmelzen der Unterkruste und somit zur Bildung potentieller Stamm-Magmen der Syenite führten. Um eine umfassende Vorstellung über die genetische und zeitliche Stellung der Karbonatite und über die Sodalith-bildenden Vorgänge zu gewinnen, wurden verschiedene Untersuchungsmethoden angewendet (petrographische und Mikrosonden-analytische Bearbeitung von Dünnschliffen, Bestimmung der Gesamtgesteins-Geochemie, mikrothermometrische Untersuchungen sowie Synchrotron-XRF(SRXRF)-Untersuchungen von Fluid-Einschlüssen, Laser-ICPMS und SRXRF-Analysen der Spurenelement-Gehalte ausgesuchter Minerale sowie O-, C- und S-Isotopenanalytik). Die für die Karbonatite gewonnenen Ergebnisse belegen eindeutig, dass es sich hierbei um magmatische Kristallisationsprodukte fraktionierter Mantelschmelzen darstellen: Die Karbonatite treten als Gänge auf, welche ältere Gesteinseinheiten durchschlagen. Gesteine im Kontakt zu den Karbonatiten haben eine metasomatische Überprägung erfahren; Nebengesteinsklasten werden von Karbonat-reichen Lagen umflossen. Die Mineralogie beider Karbonatit-Generationen, i.e. (1) Ank + Cal + Mag + Bt ± Ilm ± Ap ± Pyrochlor ± Sulfide in der karbonatitischen Brekzie und (2) Ank + Cal + Mag ± Pyrochlor ± Rutil der Ferrokarbonatit-Adern, ihre geochemischen Signaturen sowie die O- und C-Isotopie von Ankerit (8.91-9.73 ‰ d18O und –6.73 bis –6.98 ‰ d13C) bestätigen diese Interpretation, wobei die O-Isotopendaten eine schwache hydrothermale Alteration der Karbonatite nahe legen. Die Ergebnisse von konventioneller Geothermometrie in Kombination mit den für Fluid-Einschlüsse kalkulierten Isochoren belegen, dass die Platznahme der Karbonatite unter P-T-Bedingungen von 4-5 kbar und 1200-630°C erfolgte. Unter Temperaturen von 800-530°C bewirkte die Zirkulation NaCl-reicher wässriger Fluide (19-30 Gew.% NaCl äquivalent) die Umwandlung von Albit der eingeschlossenen Anorthosit-Bruchstücke in Sodalith. Wie SRXRF-Analysen belegen, enthielten die fenitisierenden Fluide zudem geringe Konzentrationen an Sr, Ba, Fe, Nb und SEE. KW - Namibia KW - Mesoproterozoikum KW - Anorthosit KW - Syenit KW - Karbonatit KW - Gesteinsbildung KW - Anorthosit KW - Karbonatit KW - Namibia KW - Sodalith KW - Syenit KW - anorthosite KW - carbonatite KW - Namibia KW - sodalite KW - syenite Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6987 ER - TY - THES A1 - Bertram, Silke T1 - Late Quaternary sand ramps in south-western Namibia - Nature, origin and palaeoclimatological significance T1 - Quartäre Sandrampen in Südwest-Namibia - Charakteristik, Entstehung und paläoklimatische Bedeutung N2 - Sand ramps have been (and still are) neglected in geomorphological research. Only recently any awareness of their potential of being a major source of palaeoenvironmental information, thanks to their multi-process character, has been developed. In Namibia, sand ramps were terra incognita. This study defines, classifies and systematizes sand ramps, investigates the formative processes and examines their palaeoenvironmental significance. The study region is located between the coastal Namib desert and the Great Escarpment, between the Tiras Mountains to the north and the Aus area to the south. Two lines of work were followed: geomorphological and sedimentological investigations in the field, assisted by interpretation of satellite images, aerial photographs and topographic maps, and palaeopedological and sedimentological analytical work in the laboratory. Two generations of sand ramps could be identified. The older generation, represented by a single sand ramp within the study region, is characterized by the presence of old basal sediments. The bulk of the sand ramps is assigned to the young generation, which is divided into three morpho-types: in windward positions voluminous ramps are found, in leeward positions low-volume ramps exist, either of very high or very low slope angle. The most distinct characteristic of sand ramp sediments is their formation by interacting aeolian deposition and fluvial slope wash. The last period of deposition, which shaped all the entire young sand ramps, but also the upper part of the old ramp, is suggested to have occurred after c. 40 ka BP, implying a highly dynamic climatic system during that time, with seasonal aridity and low-frequency, but high-intensity rainfall. A phase of environmental stability followed, most likely around 25 ka BP, supporting growth of vegetation, stabilization and consolidation of the sediments as well as soil formation. Subsequently, the profile was truncated and a desert pavement formed, under climatic conditions comparable to those of the present semi-desert. The ramps were then largely cut off from the bedrock slopes, implying a change towards higher ecosystem variability. As the final major process, recent and modern aeolian sands accumulated on the upper ramp slopes. A luminescence date for the recent sand places their deposition at about 16 ka BP, close to the Last Glacial Maximum. Regarding the source of the sands, a local origin is proposed. For the sand ramp of the old generation the "basic cycle" of initial deposition, stabilization and denudation occurred twelve times, including a phase of calcrete and/or root-cast formation in each of them, adding up to around 60 changes in morphodynamics altogether. At least nine of these cycles took place between 105 ka BP and the LGM, indicating that the general cooling trend during the Late Pleistocene was subject to a high number of oscillations of the environmental conditions not identified before for southern Namibia. Due to the high resolution obtained by the study of sand ramp sediments, but also due to the very special situation of the study area in a desert margin, 100 km from the South Atlantic and in the transition zone between summer and winter rainfall, correlation with stratigraphies (of mostly lower resolution) established for different regions in southern Africa did not appear promising. In conclusion, sand ramps generally serve as a valuable tool for detailed deciphering of past morphodynamics and thereby palaeoenvironmental conditions. For south-west Namibia, sand ramps shed some more light on the Late Quaternary landscape evolution. N2 - In der geomorphologischen Forschung haben Sandrampen bislang wenig Beachtung gefunden, erst in jüngster Zeit ist auf ihr Potential als Speicher von Paläoumweltbedingungen hingewiesen worden. In Namibia waren Sandrampen terra incognita. Die vorliegende Studie definiert, klassifiziert und systematisiert Sandrampen in Südwest-Namibia, sie entschlüsselt ihre Bildungsprozesse und untersucht ihre paläoklimatische Bedeutung. Das Arbeitsgebiet liegt zwischen der küstenparallelen Namib und der Großen Randstufe, zwischen den Tirasbergen im Norden und der Gegend um Aus im Süden. Methodisch standen geomorphologische und sedimentologische Untersuchungen im Gelände im Vordergrund, unterstützt durch die Interpretation von Satellitenbildern, Luftbildern und topographischen Karten. Zahlreiche Substratproben wurden im Labor paläopedologisch und sedimentologisch analysiert. Es konnten zwei Sandrampen-Generationen identifiziert werden. Die ältere Generation, im Arbeitsgebiet durch nur eine Rampe vertreten, zeichnet sich durch das Vorkommen alter basaler Sedimente aus. Alle anderen Rampen sind der jüngeren Generation zuzuordnen und lassen sich in drei Morpho-Typen unterteilen: In Luv-Positionen finden sich voluminöse Rampen, während im Lee geringmächtige Rampen von entweder extrem steiler oder sehr geringer Hangneigung ausgebildet sind. Das auffälligste Merkmal der Sandrampen ist ihre Bildung durch die Interaktion von äolischer Deposition und Hangspülung. Die letzte Depositionsphase, in der die gesamten Körper der jungen Sandrampen abgelagert und die basalen Sedimente der alten Generation überlagert wurden, hat vermutlich nach 40 ka BP stattgefunden. Dies impliziert ein hochdynamisches klimatisches System zu dieser Zeit, mit saisonaler Aridität und seltenen, aber intensiven Regenfällen. Es folgte eine Phase der Ökosystemstabilität, vermutlich um 25 ka BP, in der es zu Vegetationsentwicklung und Bodenbildung sowie zu Stabilisierung und Konsolidierung der Sedimente kam. Eine anschließende Profilkappung mit Wüstenpflasterbildung geschah dann unter ähnlichen klimatischen Bedingungen wie in der heutigen Halbwüste. Danach wurden die Sandrampen fast überall von den Hängen abgeschnitten, was einer Änderung zu höherer Variabilität im Ökosystem zuzusprechen wäre. Die jüngste wesentliche Überprägung bestand in der Ablagerung subrezenter und moderner äolischer Sande in den obersten Bereichen der Sandrampen. Lumineszenzdatierungen stellen die subrezenten Sande ins letzte Hochglazial (~ 16 ka BP). Dem Sandrampensand wird eine lokale Herkunft zugesprochen. Für die Sandrampe der älteren Generation wiederholte sich der Zyklus von Deposition, Stabilisierung und Denudation insgesamt zwölfmal, inklusive je einer Phase von Kalkkrusten- und/oder Wurzelpseudomorphosenbildung. Insgesamt sind rund 60 Prozesswechsel dokumentiert. Mindestens neun dieser Zyklen verliefen zwischen 105 ka BP und dem letzten Hochglazial. Der generelle Abkühlungstrend während des Spätpleistozäns war also einer bedeutenden Anzahl von Schwankungen unterworfen, die bislang für Südnamibia nicht bekannt waren. Aufgrund der hohen zeitlichen Auflösung, die sich aus den Sandrampensedimenten erschließt, aber auch durch die besondere Lage des Arbeitsgebietes in einer Wüstenrandregion, 100 km vom Südatlantik entfernt und in der Übergangszone von Sommer- und Winterniederschlag, wurden Korrelationen mit Stratigraphien (von meist geringerer Auflösung), die für andere Regionen im südlichen Afrika aufgestellt worden sind, als wenig sinnvoll erachtet. Die vorliegende Arbeit zeigt, dass sich Sandrampen generell sehr gut zur Entschlüsselung paläomorphodynamischer Prozesse eignen und damit wesentlich zur Rekonstruktion von Paläoumweltbedingungen beitragen. Für Südwest-Namibia liefern Sandrampen neue, detaillierte Informationen zur spätquartären Landschaftsgeschichte. KW - Namibia KW - Sand KW - Rampe KW - Geomorphologie KW - Sandrampen KW - Namibia KW - Geomorphologie KW - Landschaftsgeschichte KW - Trockengebiete KW - Sand ramps KW - Namibia KW - Geomorphology KW - Landscape evolution KW - Drylands Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6176 ER -