TY - JOUR A1 - Lehnert, Teresa A1 - Leonhardt, Ines A1 - Timme, Sandra A1 - Thomas-Rüddel, Daniel A1 - Bloos, Frank A1 - Sponholz, Christoph A1 - Kurzai, Oliver A1 - Figge, Marc Thilo A1 - Hünniger, Kerstin T1 - Ex vivo immune profiling in patient blood enables quantification of innate immune effector functions JF - Scientific Reports N2 - The assessment of a patient’s immune function is critical in many clinical situations. In complex clinical immune dysfunction like sepsis, which results from a loss of immune homeostasis due to microbial infection, a plethora of pro- and anti-inflammatory stimuli may occur consecutively or simultaneously. Thus, any immunomodulatory therapy would require in-depth knowledge of an individual patient’s immune status at a given time. Whereas lab-based immune profiling often relies solely on quantification of cell numbers, we used an ex vivo whole-blood infection model in combination with biomathematical modeling to quantify functional parameters of innate immune cells in blood from patients undergoing cardiac surgery. These patients experience a well-characterized inflammatory insult, which results in mitigation of the pathogen-specific response patterns towards Staphylococcus aureus and Candida albicans that are characteristic of healthy people and our patients at baseline. This not only interferes with the elimination of these pathogens from blood, but also selectively augments the escape of C. albicans from phagocytosis. In summary, our model could serve as a valuable functional immune assay for recording and evaluating innate responses to infection. KW - computational biology and bioinformatics KW - computational models KW - immunology KW - infection KW - inflammation KW - innate immunity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363337 VL - 11 ER - TY - JOUR A1 - Giles, James A. A1 - Greenhalgh, Andrew D. A1 - Denes, Adam A1 - Nieswandt, Bernhard A1 - Coutts, Graham A1 - McColl, Barry W. A1 - Allan, Stuart M. T1 - Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα JF - Immunology N2 - Neutrophils are key components of the innate immune response, providing host defence against infection and being recruited to non-microbial injury sites. Platelets act as a trigger for neutrophil extravasation to inflammatory sites but mechanisms and tissue-specific aspects of these interactions are currently unclear. Here, we use bacterial endotoxin in mice to trigger an innate inflammatory response in different tissues and measure neutrophil invasion with or without platelet reduction. We show that platelets are essential for neutrophil infiltration to the brain, peritoneum and skin. Neutrophil numbers do not rise above basal levels in the peritoneum and skin and are decreased (~60%) in the brain when platelet numbers are reduced. In contrast neutrophil infiltration in the lung is unaffected by platelet reduction, up-regulation of CXCL-1 (2·4-fold) and CCL5 (1·4-fold) acting as a compensatory mechanism in platelet-reduced mice during lung inflammation. In brain inflammation targeting platelet receptor GPIbα results in a significant decrease (44%) in platelet-mediated neutrophil invasion, while maintaining platelet numbers in the circulation. These results suggest that therapeutic blockade of platelet GPIbα could limit the harmful effects of excessive inflammation while minimizing haemorrhagic complications of platelet reduction in the brain. The data also demonstrate the ability to target damaging brain inflammation in stroke and related disorders without compromising lung immunity and hence risk of pneumonia, a major complication post stroke. In summary, our data reveal an important role for platelets in neutrophil infiltration to various tissues, including the brain, and so implicate platelets as a key, targetable component of cerebrovascular inflammatory disease or injury. KW - brain KW - inflammation KW - neuroinflammation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233048 VL - 154 ER - TY - JOUR A1 - Storey, Benjamin C. A1 - Staplin, Natalie A1 - Haynes, Richard A1 - Reith, Christina A1 - Emberson, Jonathan A1 - Herrington, William G. A1 - Wheeler, David C. A1 - Walker, Robert A1 - Fellström, Bengt A1 - Wanner, Christoph A1 - Landray, Martin J. A1 - Baigent, Colin T1 - Lowering LDL cholesterol reduces cardiovascular risk independently of presence of inflammation JF - Kidney International N2 - Markers of inflammation, including plasma C-reactive protein (CRP), are associated with an increased risk of cardiovascular disease, and it has been suggested that this association is causal. However, the relationship between inflammation and cardiovascular disease has not been extensively studied in patients with chronic kidney disease. To evaluate this, we used data from the Study of Heart and Renal Protection (SHARP) to assess associations between circulating CRP and LDL cholesterol levels and the risk of vascular and non-vascular outcomes. Major vascular events were defined as nonfatal myocardial infarction, cardiac death, stroke or arterial revascularization, with an expanded outcome of vascular events of any type. Higher baseline CRP was associated with an increased risk of major vascular events (hazard ratio per 3x increase 1.28; 95% confidence interval 1.19-1.38). Higher baseline LDL cholesterol was also associated with an increased risk of major vascular events (hazard ratio per 0.6 mmol/L higher LDL cholesterol; 1.14, 1.06-1.22). Higher baseline CRP was associated with an increased risk of a range of non-vascular events (1.16, 1.12-1.21), but there was a weak inverse association between baseline LDL cholesterol and non-vascular events (0.96, 0.92-0.99). The efficacy of lowering LDL cholesterol with simvastatin/ezetimibe on major vascular events, in the randomized comparison, was similar irrespective of CRP concentration at baseline. Thus, decisions to offer statin-based therapy to patients with chronic kidney disease should continue to be guided by their absolute risk of atherosclerotic events. Estimation of such risk may include plasma biomarkers of inflammation, but there is no evidence that the relative beneficial effects of reducing LDL cholesterol depends on plasma CRP concentration. KW - C-reactive protein KW - inflammation KW - LDL cholesterol KW - randomized trials KW - vascular disease Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240067 VL - 93 ER - TY - JOUR A1 - Czimmerer, Zsolt A1 - Daniel, Bence A1 - Horvath, Attila A1 - Rückerl, Dominik A1 - Nagy, Gergely A1 - Kiss, Mate A1 - Peloquin, Matthew A1 - Budai, Marietta M. A1 - Cuaranta-Monroy, Ixchelt A1 - Simandi, Zoltan A1 - Steiner, Laszlo A1 - Nagy Jr., Bela A1 - Poliska, Szilard A1 - Banko, Csaba A1 - Bacso, Zsolt A1 - Schulman, Ira G. A1 - Sauer, Sascha A1 - Deleuze, Jean-Francois A1 - Allen, Judith E. A1 - Benko, Szilvia A1 - Nagy, Laszlo T1 - The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages JF - Immunity N2 - The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli. KW - IL-4 KW - STAT6 KW - alternative macrophage polarization KW - transcription KW - repression KW - inflammation KW - inflammasome activation KW - pyroptosis KW - IL-1β KW - macrophage epigenomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223380 VL - 48 ER - TY - JOUR A1 - Knop, Janin A1 - Spilgies, Lisanne M. A1 - Rufli, Stefanie A1 - Reinhart, Ramona A1 - Vasilikos, Lazaros A1 - Yabal, Monica A1 - Owsley, Erika A1 - Jost, Philipp J. A1 - Marsh, Rebecca A. A1 - Wajant, Harald A1 - Robinson, Mark D. A1 - Kaufmann, Thomas A1 - W. Wei-Lynn, Wong T1 - TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP JF - Cell Death & Disease N2 - The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components. KW - cell death and immune response KW - inflammation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325946 VL - 10 ER - TY - JOUR A1 - Rolfes, Leoni A1 - Ruck, Tobias A1 - David, Christina A1 - Mencl, Stine A1 - Bock, Stefanie A1 - Schmidt, Mariella A1 - Strecker, Jan-Kolja A1 - Pfeuffer, Steffen A1 - Mecklenbeck, Andreas-Schulte A1 - Gross, Catharina A1 - Gliem, Michael A1 - Minnerup, Jens A1 - Schuhmann, Michael K. A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Natural Killer Cells Are Present in Rag1\(^{−/−}\) Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke JF - Translational Stroke Research N2 - Rag1\(^{−/−}\) mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1\(^{−/−}\) mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1\(^{null}\)IL2rg\(^{null}\) (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1\(^{−/−}\) and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1\(^{−/−}\) NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1\(^{−/−}\) were comparable in number and function to those in WT mice. Rag1\(^{−/−}\) mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1−/− controls. Our results indicate that NK cells from Rag1−/− mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke. KW - infarction KW - middle cerebral artery occlusion KW - animal model KW - inflammation KW - natural killer cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308924 SN - 1868-4483 SN - 1868-601X VL - 13 IS - 1 ER - TY - JOUR A1 - Kollmann, Catherine A1 - Buerkert, Hannah A1 - Meir, Michael A1 - Richter, Konstantin A1 - Kretzschmar, Kai A1 - Flemming, Sven A1 - Kelm, Matthias A1 - Germer, Christoph-Thomas A1 - Otto, Christoph A1 - Burkard, Natalie A1 - Schlegel, Nicolas T1 - Human organoids are superior to cell culture models for intestinal barrier research JF - Frontiers in Cell and Developmental Biology N2 - Loss of intestinal epithelial barrier function is a hallmark in digestive tract inflammation. The detailed mechanisms remain unclear due to the lack of suitable cell-based models in barrier research. Here we performed a detailed functional characterization of human intestinal organoid cultures under different conditions with the aim to suggest an optimized ex-vivo model to further analyse inflammation-induced intestinal epithelial barrier dysfunction. Differentiated Caco2 cells as a traditional model for intestinal epithelial barrier research displayed mature barrier functions which were reduced after challenge with cytomix (TNFα, IFN-γ, IL-1ß) to mimic inflammatory conditions. Human intestinal organoids grown in culture medium were highly proliferative, displayed high levels of LGR5 with overall low rates of intercellular adhesion and immature barrier function resembling conditions usually found in intestinal crypts. WNT-depletion resulted in the differentiation of intestinal organoids with reduced LGR5 levels and upregulation of markers representing the presence of all cell types present along the crypt-villus axis. This was paralleled by barrier maturation with junctional proteins regularly distributed at the cell borders. Application of cytomix in immature human intestinal organoid cultures resulted in reduced barrier function that was accompanied with cell fragmentation, cell death and overall loss of junctional proteins, demonstrating a high susceptibility of the organoid culture to inflammatory stimuli. In differentiated organoid cultures, cytomix induced a hierarchical sequence of changes beginning with loss of cell adhesion, redistribution of junctional proteins from the cell border, protein degradation which was accompanied by loss of epithelial barrier function. Cell viability was observed to decrease with time but was preserved when initial barrier changes were evident. In summary, differentiated intestinal organoid cultures represent an optimized human ex-vivo model which allows a comprehensive reflection to the situation observed in patients with intestinal inflammation. Our data suggest a hierarchical sequence of inflammation-induced intestinal barrier dysfunction starting with loss of intercellular adhesion, followed by redistribution and loss of junctional proteins resulting in reduced barrier function with consecutive epithelial death. KW - intestinal epithelial barrier KW - Caco2 cells KW - intestinal organoids KW - enteroids KW - gut barrier KW - inflammatory cell model KW - inflammation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357317 SN - 2296-634X VL - 11 ER - TY - JOUR A1 - Higuchi, Takahiro A1 - Serfling, Sebastian E. A1 - Rowe, Steven P. A1 - Werner, Rudolf A. T1 - Therapeutic effects of lipid lowering medications on myocardial blood flow, inflammation, and sympathetic nerve activity using nuclear techniques JF - Current Cardiology Reports N2 - Purpose of Review Statins are routinely applied in patients with coronary artery disease, as they allow significantly to reduce blood cholesterol levels. Although those drugs are endorsed by current guidelines and prescribed routinely, a substantial portion of patients are still statin-intolerant and image-piloted strategies may then be helpful to identify patients that need further intensified treatment, e.g., to initiate treatment with proprotein convertase subtilisin / kexin type 9 inhibitors (PCSK9i). In addition, it has also been advocated that statins exhibit nonlipid, cardio-protective effects including improved cardiac nerve integrity, blood flow, and anti-inflammatory effects in congestive heart failure (HF) patients. Recent Findings In subjects after myocardial infarction treated with statins, \(^{123}\)I-metaiodobenzylguanidine (MIBG) scintigraphy has already revealed enhanced cardiac nerve function relative to patients without statins. In addition, all of those aforementioned statin-targeted pathways in HF can be visualized and monitored using dedicated cardiac radiotracers, e.g., \(^{123}\)I-MIBG or \(^{18}\)F-AF78 (for cardiac nerve function), \(^{18}\)F-flurpiridaz (to determine coronary flow) or \(^{68}\)Ga-PentixaFor (to detect inflammation). Summary Statins exhibit various cardio-beneficial effects, including improvement of cardiac nerve function, blood flow, and reduction of inflammation, which can all be imaged using dedicated nuclear cardiac radiotracers. This may allow for in vivo monitoring of statin-induced cardioprotection beyond lipid profiling in HF patients. KW - sympathetic nervous system KW - cardiac nerve KW - MIBG KW - inflammation KW - blood flow KW - statin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324599 VL - 24 IS - 12 ER - TY - JOUR A1 - Ouhaddi, Yassine A1 - Charbonnier, Baptiste A1 - Porge, Juliette A1 - Zhang, Yu-Ling A1 - Garcia, Isadora A1 - Gbureck, Uwe A1 - Grover, Liam A1 - Gilardino, Mirko A1 - Harvey, Edward A1 - Makhoul, Nicholas A1 - Barralet, Jake T1 - Development of neovasculature in axially vascularized calcium phosphate cement scaffolds JF - Journal of Functional Biomaterials N2 - Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7–3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials. KW - angiogenesis KW - axial vascularization KW - bioceramic KW - bioinorganic KW - calcium phosphate KW - NLRP3 KW - inflammation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304026 SN - 2079-4983 VL - 14 IS - 2 ER - TY - JOUR A1 - García-Fernández, Patricia A1 - Reinhold, Colette A1 - Üçeyler, Nurcan A1 - Sommer, Claudia T1 - Local inflammatory mediators involved in neuropathic pain JF - International Journal of Molecular Sciences N2 - Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous system, 50% of which present with neuropathic pain. In some types of PNP, pain is restricted to the skin distally in the leg, suggesting a local regulatory process leading to pain. In this study, we proposed a pro-inflammatory pathway mediated by NF-κB that might be involved in the development of pain in patients with painful PNP. To test this hypothesis, we have collected nerve and skin samples from patients with different etiologies and levels of pain. We performed RT-qPCR to analyze the gene expression of the proposed inflammatory pathway components in sural nerve and in distal and proximal skin samples. In sural nerve, we showed a correlation of TLR4 and TNFα to neuropathic pain, and an upregulation of TNFα in patients with severe pain. Patients with an inflammatory PNP also presented a lower expression of TRPV1 and SIRT1. In distal skin, we found a reduced expression of TLR4 and miR-146-5p, in comparison to proximal skin. Our findings thus support our hypothesis of local inflammatory processes involved in pain in PNP, and further show disturbed anti-inflammatory pathways involving TRPV1 and SIRT1 in inflammatory PNP. KW - polyneuropathy KW - pain KW - inflammation KW - NF-κB KW - TNFα Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313613 SN - 1422-0067 VL - 24 IS - 9 ER - TY - JOUR A1 - Glaser, Kirsten A1 - Kern, David A1 - Speer, Christian P. A1 - Schlegel, Nicolas A1 - Schwab, Michael A1 - Thome, Ulrich H. A1 - Härtel, Christoph A1 - Wright, Clyde J. T1 - Imbalanced inflammatory responses in preterm and term cord blood monocytes and expansion of the CD14\(^+\)CD16\(^+\) subset upon toll-like receptor stimulation JF - International Journal of Molecular Sciences N2 - Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point to generally impaired TLR signaling, others to differences in individual pathways. In the present study, we assessed mRNA and protein expression of pro- and anti-inflammatory cytokines in preterm and term cord blood (CB) monocytes compared with adult controls stimulated ex vivo with Pam3CSK4, zymosan, polyinosinic:polycytidylic acid, lipopolysaccharide, flagellin, and CpG oligonucleotide, which activate the TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 pathways, respectively. In parallel, frequencies of monocyte subsets, stimulus-driven TLR expression, and phosphorylation of TLR-associated signaling molecules were analyzed. Independent of stimulus, pro-inflammatory responses of term CB monocytes equaled adult controls. The same held true for preterm CB monocytes—except for lower IL-1β levels. In contrast, CB monocytes released lower amounts of anti-inflammatory IL-10 and IL-1ra, resulting in higher ratios of pro-inflammatory to anti-inflammatory cytokines. Phosphorylation of p65, p38, and ERK1/2 correlated with adult controls. However, stimulated CB samples stood out with higher frequencies of intermediate monocytes (CD14\(^+\)CD16\(^+\)). Both pro-inflammatory net effect and expansion of the intermediate subset were most pronounced upon stimulation with Pam3CSK4 (TLR1/2), zymosan (TR2/6), and lipopolysaccharide (TLR4). Our data demonstrate robust pro-inflammatory and yet attenuated anti-inflammatory responses in preterm and term CB monocytes, along with imbalanced cytokine ratios. Intermediate monocytes, a subset ascribed pro-inflammatory features, might participate in this inflammatory state. KW - neonatal immunology KW - inflammation KW - preterm infants KW - monocytes KW - cord blood KW - monocyte subsets KW - cytokines KW - Toll-like receptor signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311056 SN - 1422-0067 VL - 24 IS - 5 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Hermanns, Heike M. A1 - Lorenz, Kristina A1 - Wajant, Harald A1 - Lang, Isabell T1 - Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling JF - Biomedicines N2 - Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction. KW - adiponectin KW - AMPK KW - C1q/TNF related protein (CTRP) KW - inflammation KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304136 SN - 2227-9059 VL - 11 IS - 2 ER - TY - JOUR A1 - Thal, Serge C. A1 - Smetak, Manuel A1 - Hayashi, Kentaro A1 - Förster, Carola Y. T1 - Hemorrhagic cerebral insults and secondary Takotsubo syndrome: findings in a novel in vitro model using human blood samples JF - International Journal of Molecular Sciences N2 - Intracranial hemorrhage results in devastating forms of cerebral damage. Frequently, these results also present with cardiac dysfunction ranging from ECG changes to Takotsubo syndrome (TTS). This suggests that intracranial bleeding due to subarachnoid hemorrhage (SAH) disrupts the neuro–cardiac axis leading to neurogenic stress cardiomyopathy (NSC) of different degrees. Following this notion, SAH and secondary TTS could be directly linked, thus contributing to poor outcomes. We set out to test if blood circulation is the driver of the brain–heart axis by investigating serum samples of TTS patients. We present a novel in vitro model combining SAH and secondary TTS to mimic the effects of blood or serum, respectively, on blood–brain barrier (BBB) integrity using in vitro monolayers of an established murine model. We consistently demonstrated decreased monolayer integrity and confirmed reduced Claudin-5 and Occludin levels by RT-qPCR and Western blot and morphological reorganization of actin filaments in endothelial cells. Both tight junction proteins show a time-dependent reduction. Our findings highlight a faster and more prominent disintegration of BBB in the presence of TTS and support the importance of the bloodstream as a causal link between intracerebral bleeding and cardiac dysfunction. This may represent potential targets for future therapeutic inventions in SAH and TTS. KW - Takotsubo syndrome KW - subarachnoid hemorrhage KW - inflammation KW - in vitro KW - blood KW - blood–brain barrier KW - human KW - patient KW - endothelial cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288305 SN - 1422-0067 VL - 23 IS - 19 ER - TY - JOUR A1 - Magliocca, Giorgia A1 - Mone, Pasquale A1 - Di Iorio, Biagio Raffaele A1 - Heidland, August A1 - Marzocco, Stefania T1 - Short-chain fatty acids in Chronic Kidney Disease: focus on inflammation and oxidative stress regulation JF - International Journal of Molecular Sciences N2 - Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress. KW - chronic kidney disease KW - short-chain fatty acids KW - oxidative stress KW - inflammation KW - uremic toxins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284587 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Dresen, Ellen A1 - Pimiento, Jose M. A1 - Patel, Jayshil J. A1 - Heyland, Daren K. A1 - Rice, Todd W. A1 - Stoppe, Christian T1 - Overview of oxidative stress and the role of micronutrients in critical illness JF - Journal of Parenteral and Enteral Nutrition N2 - Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness. KW - critical illness KW - vitamins KW - vitamin C KW - inflammation KW - medical nutrition therapy KW - oxidative stress KW - selenium KW - trace elements KW - micronutrients KW - vitamin D KW - zinc Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318186 VL - 47 SP - S38 EP - S49 ER - TY - JOUR A1 - Weider, Margareta A1 - Schlagenhauf, Ulrich A1 - Seefried, Lothar T1 - Oral health status of adult hypophosphatasia patients: A cross‐sectional study JF - Journal of Clinical Periodontology N2 - Aim This study evaluated the oral health status of adult patients with hypophosphatasia (HPP). Materials and Methods Parameters of oral health assessment comprised decayed/missing/filled teeth (DMFT) index, probing pocket depth and clinical attachment level (CAL) as well as documentation of tooth loss and periodontal health status according to CCD/AAP criteria. Findings were compared with national reference data (DMS V survey) reporting oral health status in age‐related controls. Within‐group comparisons were made between the HPP patients harbouring one versus two alkaline phosphatase liver/bone/kidney type (ALPL) gene variants. Results Of 80 HPP patients (64 female) with a mean age of 46.4 years (range 24–78) and one (n = 55) or two (n = 18) variants (n = 7 lacking testing) within the ALPL gene, those with two variants displayed substantially higher tooth loss rate (14.0 ± 9.3) than those affected by only one ALPL variant (4.1 ± 5.4), who did not differ substantially from healthy DMS V controls. While DMFT score and severe periodontal diseases (PDs) of HPP patients with one variant only increased with progressing age, the two‐variant sub‐cohort age independently exhibited increased DMFT scores and a higher rate of severe PDs. Conclusions HPP patients affected by two variants of the ALPL gene exhibited a higher risk of periodontitis and tooth loss than the general population, while patients with one variant developed clinically relevant oral disease symptoms with progressing ageing. KW - dental status KW - hypophosphatasia KW - inflammation KW - periodontal disease KW - tooth loss Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293777 VL - 49 IS - 12 SP - 1253 EP - 1261 ER - TY - JOUR A1 - Baum, Petra A1 - Toyka, Klaus V. A1 - Blüher, Matthias A1 - Kosacka, Joanna A1 - Nowicki, Marcin T1 - Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN) — new aspects JF - International Journal of Molecular Sciences N2 - The pathogenesis of diabetic neuropathy is complex, and various pathogenic pathways have been proposed. A better understanding of the pathophysiology is warranted for developing novel therapeutic strategies. Here, we summarize recent evidence from experiments using animal models of type 1 and type 2 diabetes showing that low-grade intraneural inflammation is a facet of diabetic neuropathy. Our experimental data suggest that these mild inflammatory processes are a likely common terminal pathway in diabetic neuropathy associated with the degeneration of intraepidermal nerve fibers. In contrast to earlier reports claiming toxic effects of high-iron content, we found the opposite, i.e., nutritional iron deficiency caused low-grade inflammation and fiber degeneration while in normal or high non-heme iron nutrition no or only extremely mild inflammatory signs were identified in nerve tissue. Obesity and dyslipidemia also appear to trigger mild inflammation of peripheral nerves, associated with neuropathy even in the absence of overt diabetes mellitus. Our finding may be the experimental analog of recent observations identifying systemic proinflammatory activity in human sensorimotor diabetic neuropathy. In a rat model of type 1 diabetes, a mild neuropathy with inflammatory components could be induced by insulin treatment causing an abrupt reduction in HbA1c. This is in line with observations in patients with severe diabetes developing a small fiber neuropathy upon treatment-induced rapid HbA1c reduction. If the inflammatory pathogenesis could be further substantiated by data from human tissues and intervention studies, anti-inflammatory compounds with different modes of action may become candidates for the treatment or prevention of diabetic neuropathy. KW - diabetic neuropathy KW - pathogenesis KW - inflammation KW - iron KW - treatment-induced neuropathy in diabetes (TIND) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284556 SN - 1422-0067 VL - 22 IS - 19 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Rajendran, Vinothkumar A1 - Giraldo-Velasquez, Mario A1 - Megalofonou, Fevronia-Foivi A1 - Gurski, Fynn A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Berghoff, Martin T1 - Oligodendrocyte-specific deletion of FGFR1 reduces cerebellar inflammation and neurodegeneration in MOG\(_{35-55}\)-induced EAE JF - International Journal of Molecular Sciences N2 - Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS). MS commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs significantly contribute to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are difficult to treat. Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies such as MS. In autopsy tissue from patients with MS, increased expression of FGF1, FGF2, FGF9, and FGFR1 was found in lesion areas. Recent research using mouse models has focused on regions such as the spinal cord, and data on the expression of FGF/FGFR in the cerebellum are not available. In recent EAE studies, we detected that oligodendrocyte-specific deletion of FGFRs results in a milder disease course, less cellular infiltrates, and reduced neurodegeneration in the spinal cord. The objective of this study was to characterize the role of FGFR1 in oligodendrocytes in the cerebellum. Conditional deletion of FGFR1 in oligodendrocytes (Fgfr1\(^{ind−/−}\) was achieved by tamoxifen application, EAE was induced using the MOG\(_{35-55}\) peptide. The cerebellum was analyzed by histology, immunohistochemistry, and western blot. At day 62 p.i., Fgfr1\(^{ind−/−}\) mice showed less myelin and axonal degeneration compared to FGFR1-competent mice. Infiltration of CD3(+) T cells, Mac3(+) cells, B220(+) B cells and IgG(+) plasma cells in cerebellar white matter lesions (WML) was less in Fgfr1\(^{ind−/−}\)mice. There were no effects on the number of OPC or mature oligodendrocytes in white matter lesion (WML). Expression of FGF2 and FGF9 associated with less myelin and axonal degeneration, and of the pro-inflammatory cytokines IL-1β, IL-6, and CD200 was downregulated in Fgfr1\(^{ind−/−}\) mice. The FGF/FGFR signaling protein pAkt, BDNF, and TrkB were increased in Fgfr1\(^{ind−/−}\) mice. These data suggest that cell-specific deletion of FGFR1 in oligodendrocytes has anti-inflammatory and neuroprotective effects in the cerebellum in the EAE disease model of MS. KW - FGFR1 KW - oligodendrocytes KW - demyelination KW - inflammation KW - cerebellum KW - EAE KW - MS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284296 SN - 1422-0067 VL - 22 IS - 17 ER - TY - JOUR A1 - Rapa, Shara Francesca A1 - Di Iorio, Biagio Raffaele A1 - Campiglia, Pietro A1 - Heidland, August A1 - Marzocco, Stefania T1 - Inflammation and oxidative stress in chronic kidney disease — Potential therapeutic role of minerals, vitamins and plant-derived metabolites JF - International Journal of Molecular Sciences N2 - Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary. KW - chronic kidney disease (CKD) KW - inflammation KW - oxidative stress KW - uremic toxins KW - minerals KW - vitamins KW - plant-derived metabolites Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284998 SN - 1422-0067 VL - 21 IS - 1 ER - TY - JOUR A1 - Koeniger, Tobias A1 - Kuerten, Stefanie T1 - Splitting the "unsplittable": Dissecting resident and infiltrating macrophages in experimental autoimmune encephalomyelitis JF - International Journal of Molecular Sciences N2 - Macrophages predominate the inflammatory landscape within multiple sclerosis (MS) lesions, not only regarding cellularity but also with respect to the diverse functions this cell fraction provides during disease progression and remission. Researchers have been well aware of the fact that the macrophage pool during central nervous system (CNS) autoimmunity consists of a mixture of myeloid cells. Yet, separating these populations to define their unique contribution to disease pathology has long been challenging due to their similar marker expression. Sophisticated lineage tracing approaches as well as comprehensive transcriptome analysis have elevated our insight into macrophage biology to a new level enabling scientists to dissect the roles of resident (microglia and non-parenchymal macrophages) and infiltrating macrophages with unprecedented precision. To do so in an accurate way, researchers have to know their toolbox, which has been filled with diverse, discriminating approaches from decades of studying neuroinflammation in animal models. Every method has its own strengths and weaknesses, which will be addressed in this review. The focus will be on tools to manipulate and/or identify different macrophage subgroups within the injured murine CNS. KW - CNS KW - distinction KW - experimental autoimmune encephalomyelitis KW - inflammation KW - macrophages KW - markers KW - microglia KW - monocytes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285067 SN - 1422-0067 VL - 18 IS - 10 ER - TY - JOUR A1 - Ungern-Sternberg, Saskia N. I. von A1 - Zernecke, Alma A1 - Seizer, Peter T1 - Extracellular matrix metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease JF - International Journal of Molecular Sciences N2 - The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease. KW - cardiovascular disease KW - immunoglobulin superfamily KW - inflammation KW - platelets KW - monocyte-platelet aggregates Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285014 SN - 1422-0067 VL - 19 IS - 2 ER - TY - JOUR A1 - Lauruschkat, Chris D. A1 - Etter, Sonja A1 - Schnack, Elisabeth A1 - Ebel, Frank A1 - Schäuble, Sascha A1 - Page, Lukas A1 - Rümens, Dana A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Panagiotou, Gianni A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Wurster, Sebastian A1 - Loeffler, Juergen T1 - Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses JF - Journal of Fungi N2 - Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses. KW - mold exposure KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity KW - hypersensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245202 SN - 2309-608X VL - 7 IS - 9 ER - TY - JOUR A1 - Spitzel, Marlene A1 - Wagner, Elise A1 - Breyer, Maximilian A1 - Henniger, Dorothea A1 - Bayin, Mehtap A1 - Hofmann, Lukas A1 - Mauceri, Daniela A1 - Sommer, Claudia A1 - Üçeyler, Nurcan T1 - Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease JF - Cells N2 - Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients. KW - Fabry disease KW - globotriaosylceramide KW - inflammation KW - macrophages KW - cytokines KW - ion channels KW - flotillin-1 lipid rafts KW - pain-associated behavior KW - mouse model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275186 SN - 2073-4409 VL - 11 IS - 11 ER - TY - JOUR A1 - Schapovalova, Olesia A1 - Gorlova, Anna A1 - de Munter, Johannes A1 - Sheveleva, Elisaveta A1 - Eropkin, Mikhail A1 - Gorbunov, Nikita A1 - Sicker, Michail A1 - Umriukhin, Aleksei A1 - Lyubchyk, Sergiy A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana A1 - Schroeter, Careen A. T1 - Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice JF - Frontiers in Medicine N2 - Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for “sickness” behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, “sickness behavior,” suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects. KW - toll-like receptors KW - SARS-CoV-2 KW - inflammation KW - pro-inflammatory cytokines KW - mice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286301 SN - 2296-858X VL - 9 ER - TY - JOUR A1 - Hung, Sophia A1 - Dreher, Liane A1 - Diessner, Joachim A1 - Schwarz, Stefan A1 - Ohlsen, Knut A1 - Hertlein, Tobias T1 - MRSA infection in the thigh muscle leads to systemic disease, strong inflammation, and loss of human monocytes in humanized mice JF - Frontiers in Immunology N2 - MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of “humanized” mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2R\(_γ\)\(^{null}\) mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or “murinized” mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches. KW - humanized mice KW - MRSA - methicillin-resistant Staphylococcus aureus KW - monocyte KW - bacterial infection model KW - inflammation KW - NSG KW - staphylocccal infection/epidemiology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278050 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Saint Fleur-Lominy, Shella A1 - Maus, Mate A1 - Vaeth, Martin A1 - Lange, Ingo A1 - Zee, Isabelle A1 - Suh, David A1 - Liu, Cynthia A1 - Wu, Xiaojun A1 - Tikhonova, Anastasia A1 - Aifantis, Iannis A1 - Feske, Stefan T1 - STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia JF - Cell Reports N2 - T cell acute lymphoblastic leukemia (T-ALL) is commonly associated with activating mutations in the NOTCH1 pathway. Recent reports have shown a link between NOTCH1 signaling and intracellular Ca2+ homeostasis in T-ALL. Here, we investigate the role of store-operated Ca2+ entry (SOCE) mediated by the Ca2+ channel ORAI1 and its activators STIM1 and STIM2 in T-ALL. Deletion of STIM1 and STIM2 in leukemic cells abolishes SOCE and significantly prolongs the survival of mice in a NOTCH1-dependent model of T-ALL. The survival advantage is unrelated to the leukemic cell burden but is associated with the SOCE-dependent ability of malignant T lymphoblasts to cause inflammation in leukemia-infiltrated organs. Mice with STIM1/STIM2-deficient T-ALL show a markedly reduced necroinflammatory response in leukemia-infiltrated organs and downregulation of signaling pathways previously linked to cancer-induced inflammation. Our study shows that leukemic T lymphoblasts cause inflammation of leukemia-infiltrated organs that is dependent on SOCE. KW - T cell acute lymphoblastic leukemia KW - T-ALL KW - Notch1 KW - STIM1 KW - STIM2 KW - calcium KW - Ca2+ KW - CRAC KW - channel KW - inflammation KW - interferon KW - anemia KW - macrophages Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227259 VL - 24 IS - 11 ER - TY - JOUR A1 - Karnati, Srikanth A1 - Guntas, Gulcan A1 - Rajendran, Ranjithkumar A1 - Shityakov, Sergey A1 - Höring, Marcus A1 - Liebisch, Gerhard A1 - Kosanovic, Djuro A1 - Ergün, Süleyman A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Quantitative lipidomic analysis of Takotsubo syndrome patients' serum JF - Frontiers in Cardiovascular Medicine N2 - Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future. KW - TTS KW - inflammation KW - lipids KW - TNF-α KW - IL6 KW - PIK3R1 KW - NF-kappa-B KW - phosphatidylinositol Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270832 SN - 2297-055X VL - 9 IS - 797154 ER - TY - JOUR A1 - Freitag‐Wolf, Sandra A1 - Munz, Matthias A1 - Junge, Olaf A1 - Graetz, Christian A1 - Jockel‐Schneider, Yvonne A1 - Staufenbiel, Ingmar A1 - Bruckmann, Corinna A1 - Lieb, Wolfgang A1 - Franke, Andre A1 - Loos, Bruno G. A1 - Jepsen, Søren A1 - Dommisch, Henrik A1 - Schaefer, Arne S. T1 - Sex‐specific genetic factors affect the risk of early‐onset periodontitis in Europeans JF - Journal of Clinical Periodontology N2 - Aims Various studies have reported that young European women are more likely to develop early‐onset periodontitis compared to men. A potential explanation for the observed variations in sex and age of disease onset is the natural genetic variation within the autosomal genomes. We hypothesized that genotype‐by‐sex (G × S) interactions contribute to the increased prevalence and severity. Materials and methods Using the case‐only design, we tested for differences in genetic effects between men and women in 896 North‐West European early‐onset cases, using imputed genotypes from the OmniExpress genotyping array. Population‐representative 6823 controls were used to verify that the interacting variables G and S were uncorrelated in the general population. Results In total, 20 loci indicated G × S associations (P < 0.0005), 3 of which were previously suggested as risk genes for periodontitis (ABLIM2, CDH13, and NELL1). We also found independent G × S interactions of the related gene paralogs MACROD1/FLRT1 (chr11) and MACROD2/FLRT3 (chr20). G × S‐associated SNPs at CPEB4, CDH13, MACROD1, and MECOM were genome‐wide‐associated with heel bone mineral density (CPEB4, MECOM), waist‐to‐hip ratio (CPEB4, MACROD1), and blood pressure (CPEB4, CDH13). Conclusions Our results indicate that natural genetic variation affects the different heritability of periodontitis among sexes and suggest genes that contribute to inter‐sex phenotypic variation in early‐onset periodontitis. KW - alveolar bone loss KW - gene × sex interaction KW - genetic risk KW - heritability KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262445 VL - 48 IS - 11 SP - 1404 EP - 1413 ER - TY - JOUR A1 - Grassinger, Julia Maria A1 - Floren, Andreas A1 - Müller, Tobias A1 - Cerezo-Echevarria, Argiñe A1 - Beitzinger, Christoph A1 - Conrad, David A1 - Törner, Katrin A1 - Staudacher, Marlies A1 - Aupperle-Lellbach, Heike T1 - Digital lesions in dogs: a statistical breed analysis of 2912 cases JF - Veterinary Sciences N2 - Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014–2019 to the Laboklin GmbH & Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43%), tumor-like lesions in 138 (5%), and neoplasms in 1528 cases (52%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = −2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = −2.17), Jack Russell Terriers (log OR = −1.88), and Rhodesian Ridgebacks (log OR = −1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or “resistance” to the development of specific acral tumors and/or other sites. KW - canine KW - subungual KW - toe KW - tumor KW - inflammation KW - breed predisposition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242690 SN - 2306-7381 VL - 8 IS - 7 ER - TY - JOUR A1 - Schäfer, Sarah A1 - Zernecke, Alma T1 - CD8\(^+\) T cells in atherosclerosis JF - Cells N2 - Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8\(^+\) T cells. The CD8\(^+\) T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8\(^+\) T cells ameliorates atherosclerosis. CD8\(^+\) T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8\(^+\) T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8\(^+\) T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8\(^+\) T cells and their cytotoxic activity. CD8\(^+\) T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25\(^+\)CD8\(^+\) T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8\(^+\) T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8\(^+\) T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8\(^+\) T cells in atherosclerosis. KW - atherosclerosis KW - CD8\(^+\) T cells KW - inflammation KW - cytotoxic T cells KW - single cell RNA sequencing KW - checkpoint inhibitors KW - immunotherapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220170 SN - 2073-4409 VL - 10 IS - 1 ER - TY - JOUR A1 - Lauruschkat, Chris D. A1 - Page, Lukas A1 - White, P. Lewis A1 - Etter, Sonja A1 - Davies, Helen E. A1 - Duckers, Jamie A1 - Ebel, Frank A1 - Schnack, Elisabeth A1 - Backx, Matthijs A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Wurster, Sebastian T1 - Development of a simple and robust whole blood assay with dual co-stimulation to quantify the release of T-cellular signature cytokines in response to Aspergillus fumigatus antigens JF - Journal of Fungi N2 - Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens. KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241025 SN - 2309-608X VL - 7 IS - 6 ER - TY - JOUR A1 - Oelschlaegel, Diana A1 - Weiss Sadan, Tommy A1 - Salpeter, Seth A1 - Krug, Sebastian A1 - Blum, Galia A1 - Schmitz, Werner A1 - Schulze, Almut A1 - Michl, Patrick T1 - Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages JF - Cancers N2 - Stroma-infiltrating immune cells, such as tumor-associated macrophages (TAM), play an important role in regulating tumor progression and chemoresistance. These effects are mostly conveyed by secreted mediators, among them several cathepsin proteases. In addition, increasing evidence suggests that stroma-infiltrating immune cells are able to induce profound metabolic changes within the tumor microenvironment. In this study, we aimed to characterize the impact of cathepsins in maintaining the TAM phenotype in more detail. For this purpose, we investigated the molecular effects of pharmacological cathepsin inhibition on the viability and polarization of human primary macrophages as well as its metabolic consequences. Pharmacological inhibition of cathepsins B, L, and S using a novel inhibitor, GB111-NH\(_2\), led to changes in cellular recycling processes characterized by an increased expression of autophagy- and lysosome-associated marker genes and reduced adenosine triphosphate (ATP) content. Decreased cathepsin activity in primary macrophages further led to distinct changes in fatty acid metabolites associated with increased expression of key modulators of fatty acid metabolism, such as fatty acid synthase (FASN) and acid ceramidase (ASAH1). The altered fatty acid profile was associated with an increased synthesis of the pro-inflammatory prostaglandin PGE\(_2\), which correlated with the upregulation of numerous NF\(_k\)B-dependent pro-inflammatory mediators, including interleukin-1 (IL-1), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-alpha (TNFα). Our data indicate a novel link between cathepsin activity and metabolic reprogramming in macrophages, demonstrated by a profound impact on autophagy and fatty acid metabolism, which facilitates a pro-inflammatory micromilieu generally associated with enhanced tumor elimination. These results provide a strong rationale for therapeutic cathepsin inhibition to overcome the tumor-promoting effects of the immune-evasive tumor micromilieu. KW - cathepsin KW - activity-based probes KW - tumor-associated macrophage KW - autophagy KW - lysosome KW - lipid metabolism KW - inflammation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213040 SN - 2072-6694 VL - 12 IS - 9 ER - TY - JOUR A1 - Budde, Heidi A1 - Hassoun, Roua A1 - Tangos, Melina A1 - Zhazykbayeva, Saltanat A1 - Herwig, Melissa A1 - Varatnitskaya, Marharyta A1 - Sieme, Marcel A1 - Delalat, Simin A1 - Sultana, Innas A1 - Kolijn, Detmar A1 - Gömöri, Kamilla A1 - Jarkas, Muhammad A1 - Lódi, Mária A1 - Jaquet, Kornelia A1 - Kovács, Árpád A1 - Mannherz, Hans Georg A1 - Sequeira, Vasco A1 - Mügge, Andreas A1 - Leichert, Lars I. A1 - Sossalla, Samuel A1 - Hamdani, Nazha T1 - The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts JF - Antioxidants N2 - Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca\(^{2+}\)-activated tension and Ca\(^{2+}\) sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca\(^{2+}\) sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure. KW - myofilament proteins KW - oxidative stress KW - inflammation KW - phosphorylation KW - S-glutathionylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242701 SN - 2076-3921 VL - 10 IS - 7 ER - TY - JOUR A1 - Weiland, Judith A1 - Beez, Alexandra A1 - Westermaier, Thomas A1 - Kunze, Ekkehard A1 - Sirén, Anna-Leena A1 - Lilla, Nadine T1 - Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH) JF - International Journal of Molecular Sciences N2 - Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury. KW - subarachnoid hemorrhage (SAH) KW - inflammation KW - thromboinflammation KW - metabolism KW - neuroprotection KW - therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260755 SN - 1422-0067 VL - 22 IS - 11 ER - TY - JOUR A1 - Morbach, Caroline A1 - Beyersdorf, Niklas A1 - Kerkau, Thomas A1 - Ramos, Gustavo A1 - Sahiti, Floran A1 - Albert, Judith A1 - Jahns, Roland A1 - Ertl, Georg A1 - Angermann, Christiane E. A1 - Frantz, Stefan A1 - Hofmann, Ulrich A1 - Störk, Stefan T1 - Adaptive anti-myocardial immune response following hospitalization for acute heart failure JF - ESC Heart Failure N2 - Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49%) female, and 24 (51%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45%) to F6 (n = 36, 77%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88%) compared with patients with reduced ejection fraction (n = 14, 61%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95% confidence interval 1.13–20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression. KW - adaptive immune response KW - acute heart failure KW - anti-myocardial KW - autoantibody KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258907 VL - 8 IS - 4 ER - TY - JOUR A1 - Heitmann, Johanna A1 - Frings, Verena G. A1 - Geier, Andreas A1 - Goebeler, Matthias A1 - Kerstan, Andreas T1 - Non-alcoholic fatty liver disease and psoriasis - is there a shared proinflammatory network? JF - Journal der Deutschen Dermatologischen Gesellschaft N2 - Psoriasis is an immune-mediated systemic inflammatory disease that is not limited to the skin but may be associated with arthritis, cardiovascular diseases, metabolic syndrome including diabetes and obesity and, as identified more recently, non-alcoholic fatty liver disease (NAFLD) that occurs in approximately 50 % of all patients with psoriasis. NAFLD is characterized by accumulation of fat in hepatocytes in the absence of excessive alcohol consumption. Over the last two decades, NAFLD has developed to the most common chronic liver disease with an estimated prevalence of 25 % in the Western population. NAFLD ranges from non-inflammatory or bland hepatic steatosis to inflammation of hepatic tissue (non-alcoholic steatohepatitis, NASH) and consecutive liver fibrosis. It is controversial whether the underlying systemic inflammation of psoriasis is contributing to development of NAFLD or if comorbid diseases such as obesity enhance NAFLD development. Recent findings indicate that cytokine-mediated inflammation through TNFα, interleukin (IL)-6 and IL-17 might be the common link between psoriasis and NAFLD. Considering the shared inflammatory pathways, IL-17 pharmacological blockade, which is already well-established for psoriasis, may be a promising strategy to treat both psoriasis and NAFLD. Therefore, early detection of NAFLD and a better understanding of its pathophysiology in the context of the systemic inflammation in psoriasis is important with regard to individualized treatment approaches. KW - psoriasis KW - fatty liver disease KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258424 VL - 19 IS - 4 ER - TY - JOUR A1 - Graser, Stephanie A1 - Liedtke, Daniel A1 - Jakob, Franz T1 - TNAP as a new player in chronic inflammatory conditions and metabolism JF - International Journal of Molecular Sciences N2 - This review summarizes important information on the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP) and gives a brief insight into the symptoms, diagnostics, and treatment of the rare disease Hypophosphatasia (HPP), which is resulting from mutations in the TNAP encoding ALPL gene. We emphasize the role of TNAP beyond its well-known contribution to mineralization processes. Therefore, above all, the impact of the enzyme on central molecular processes in the nervous system and on inflammation is presented here. KW - TNAP KW - Hypophosphatasia KW - HPP KW - mineralization KW - nervous system KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258888 SN - 1422-0067 VL - 22 IS - 2 ER - TY - JOUR A1 - Burkard, Natalie A1 - Meir, Michael A1 - Kannapin, Felix A1 - Otto, Christoph A1 - Petzke, Maximilian A1 - Germer, Christoph-Thomas A1 - Waschke, Jens A1 - Schlegel, Nicolas T1 - Desmoglein2 Regulates Claudin2 Expression by Sequestering PI-3-Kinase in Intestinal Epithelial Cells JF - Frontiers in Immunology N2 - Inflammation-induced reduction of intestinal desmosomal cadherin Desmoglein 2 (Dsg2) is linked to changes of tight junctions (TJ) leading to impaired intestinal epithelial barrier (IEB) function by undefined mechanisms. We characterized the interplay between loss of Dsg2 and upregulation of pore-forming TJ protein Claudin2. Intraperitoneal application of Dsg2-stablising Tandem peptide (TP) attenuated impaired IEB function, reduction of Dsg2 and increased Claudin2 in DSS-induced colitis in C57Bl/6 mice. TP blocked loss of Dsg2-mediated adhesion and upregulation of Claudin2 in Caco2 cells challenged with TNFα. In Dsg2-deficient Caco2 cells basal expression of Claudin2 was increased which was paralleled by reduced transepithelial electrical resistance and by augmented phosphorylation of AKT\(^{Ser473}\) under basal conditions. Inhibition of phosphoinositid-3-kinase proved that PI-3-kinase/AKT-signaling is critical to upregulate Claudin2. In immunostaining PI-3-kinase dissociated from Dsg2 under inflammatory conditions. Immunoprecipitations and proximity ligation assays confirmed a direct interaction of Dsg2 and PI-3-kinase which was abrogated following TNFα application. In summary, Dsg2 regulates Claudin2 expression by sequestering PI-3-kinase to the cell borders in intestinal epithelium. KW - Claudin2 KW - Dsg2 KW - inflammation KW - intestinal barrier KW - PI-3-kinase KW - inflammatory bowel disease KW - desmosome KW - tight junction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247059 SN - 1664-3224 VL - 12 ER - TY - JOUR A1 - Fröhlich, Matthias A1 - Serfling, Sebastian A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Schmalzing, Marc A1 - Tony, Hans-Peter A1 - Gernert, Michael A1 - Strunz, Patrick-Pascal A1 - Portegys, Jan A1 - Schwaneck, Eva-Christina A1 - Gadeholt, Ottar A1 - Weich, Alexander A1 - Buck, Andreas K. A1 - Bley, Thorsten A. A1 - Guggenberger, Konstanze V. A1 - Werner, Rudolf A. T1 - Whole-Body [\(^{18}\)F]FDG PET/CT Can Alter Diagnosis in Patients with Suspected Rheumatic Disease JF - Diagnostics N2 - The 2-deoxy-d-[\(^{18}\)F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely utilized to assess the vascular and articular inflammatory burden of patients with a suspected diagnosis of rheumatic disease. We aimed to elucidate the impact of [\(^{18}\)F]FDG PET/CT on change in initially suspected diagnosis in patients at the time of the scan. Thirty-four patients, who had undergone [\(^{18}\)F]FDG PET/CT, were enrolled and the initially suspected diagnosis prior to [18F]FDG PET/CT was compared to the final diagnosis. In addition, a semi-quantitative analysis including vessel wall-to-liver (VLR) and joint-to-liver (JLR) ratios was also conducted. Prior to [\(^{18}\)F]FDG PET/CT, 22/34 (64.7%) of patients did not have an established diagnosis, whereas in 7/34 (20.6%), polymyalgia rheumatica (PMR) was suspected, and in 5/34 (14.7%), giant cell arteritis (GCA) was suspected by the referring rheumatologists. After [\(^{18}\)F]FDG PET/CT, the diagnosis was GCA in 19/34 (55.9%), combined GCA and PMR (GCA + PMR) in 9/34 (26.5%) and PMR in the remaining 6/34 (17.6%). As such, [\(^{18}\)F]FDG PET/CT altered suspected diagnosis in 28/34 (82.4%), including in all unclear cases. VLR of patients whose final diagnosis was GCA tended to be significantly higher when compared to VLR in PMR (GCA, 1.01 ± 0.08 (95%CI, 0.95–1.1) vs. PMR, 0.92 ± 0.1 (95%CI, 0.85–0.99), p = 0.07), but not when compared to PMR + GCA (1.04 ± 0.14 (95%CI, 0.95–1.13), p = 1). JLR of individuals finally diagnosed with PMR (0.94 ± 0.16, (95%CI, 0.83–1.06)), however, was significantly increased relative to JLR in GCA (0.58 ± 0.04 (95%CI, 0.55–0.61)) and GCA + PMR (0.64 ± 0.09 (95%CI, 0.57–0.71); p < 0.0001, respectively). In individuals with a suspected diagnosis of rheumatic disease, an inflammatory-directed [\(^{18}\)F]FDG PET/CT can alter diagnosis in the majority of the cases, particularly in subjects who were referred because of diagnostic uncertainty. Semi-quantitative assessment may be helpful in establishing a final diagnosis of PMR, supporting the notion that a quantitative whole-body read-out may be useful in unclear cases. KW - giant cell arteritis KW - GCA KW - [18F]FDG PET/CT KW - vasculature KW - inflammation KW - polymyalgia rheumatica KW - PMR KW - vasculitis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250227 SN - 2075-4418 VL - 11 IS - 11 ER - TY - JOUR A1 - Ockermann, Philipp A1 - Headley, Laura A1 - Lizio, Rosario A1 - Hansmann, Jan T1 - A Review of the Properties of Anthocyanins and Their Influence on Factors Affecting Cardiometabolic and Cognitive Health JF - Nutrients N2 - The incidence of cardiovascular and metabolic diseases has increased over the last decades and is an important cause of death worldwide. An upcoming ingredient on the nutraceutical market are anthocyanins, a flavonoid subgroup, abundant mostly in berries and fruits. Epidemiological studies have suggested an association between anthocyanin intake and improved cardiovascular risk, type 2 diabetes and myocardial infarct. Clinical studies using anthocyanins have shown a significant decrease in inflammation markers and oxidative stress, a beneficial effect on vascular function and hyperlipidemia by decreasing low-density lipoprotein and increasing high-density lipoprotein. They have also shown a potential effect on glucose homeostasis and cognitive decline. This review summarizes the effects of anthocyanins in in-vitro, animal and human studies to give an overview of their application in medical prevention or as a dietary supplement. KW - anthocyanins KW - antioxidative KW - blood pressure KW - hyperlipidemia KW - diabetes KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245116 SN - 2072-6643 VL - 13 IS - 8 ER - TY - JOUR A1 - Popp, Sandy A1 - Schmitt-Böhrer, Angelika A1 - Langer, Simon A1 - Hofmann, Ulrich A1 - Hommers, Leif A1 - Schuh, Kai A1 - Frantz, Stefan A1 - Lesch, Klaus-Peter A1 - Frey, Anna T1 - 5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction JF - Journal of Clinical Medicine N2 - Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally naïve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (−/−) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT−/− mice with infarct sizes >30% experienced 100% mortality, while 50% of 5-HTT+/− and 37% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30%) 5-HTT−/− mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT−/− mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice. KW - chronic heart failure KW - myocardial infarction KW - serotonin transporter deficient mice KW - anxiety KW - depression KW - behavior KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242739 SN - 2077-0383 VL - 10 IS - 14 ER - TY - JOUR A1 - Andelovic, Kristina A1 - Winter, Patrick A1 - Jakob, Peter Michael A1 - Bauer, Wolfgang Rudolf A1 - Herold, Volker A1 - Zernecke, Alma T1 - Evaluation of plaque characteristics and inflammation using magnetic resonance imaging JF - Biomedicines N2 - Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients. KW - atherosclerosis KW - mouse models KW - wall shear stress KW - pulse wave velocity KW - arterial elasticity KW - inflammation KW - magnetic resonance imaging Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228839 SN - 2227-9059 VL - 9 IS - 2 ER - TY - JOUR A1 - Frischholz, Sebastian A1 - Berberich, Oliver A1 - Böck, Thomas A1 - Meffert, Rainer H. A1 - Blunk, Torsten T1 - Resveratrol counteracts IL‐1β‐mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs JF - Journal of Tissue Engineering and Regenerative Medicine N2 - When aiming at cell‐based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL‐1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti‐inflammatory properties. However, long‐term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long‐term model cultures for cell‐based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL‐1β (1–10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL‐1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL‐1β‐treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL‐1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL‐1β‐mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long‐term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques. KW - articular chondrocytes KW - cartilage KW - cell‐based therapy KW - extracellular matrix KW - IL‐1β KW - inflammation KW - osteoarthritis KW - resveratrol Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215471 VL - 14 IS - 7 SP - 897 EP - 908 ER - TY - JOUR A1 - Schmid, Tobias A1 - Falter, Lena A1 - Weber, Sabine A1 - Müller, Nils A1 - Molitor, Konstantin A1 - Zeller, David A1 - Weber-Steffens, Dorothea A1 - Hehlgans, Thomas A1 - Wajant, Harald A1 - Mostböck, Sven A1 - Männel, Daniela N. T1 - Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 costimulation JF - Frontiers in Immunology N2 - TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. \(In\) \(vitro\), TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported \(in\) \(vitro\) expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. \(In\) \(vivo\) application of TNCscTNF80-induced mild myelopoiesis in naïve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in naïve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in naïve mice can lead to immune suppression \(in\) \(vivo\). These findings support the important role of TNFR2 for Treg cells in immune regulation. KW - molecular medicine KW - inflammation KW - immune regulation KW - costimulation KW - MDSC KW - TNFR2 KW - regulatory T cell Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173259 VL - 8 ER - TY - JOUR A1 - Hofmann, Sigrun Ruth A1 - Böttger, Fanny A1 - Range, Ursula A1 - Lück, Christian A1 - Morbach, Henner A1 - Girschick, Hermann Joseph A1 - Suttorp, Meinolf A1 - Hedrich, Christian Michael T1 - Serum interleukin-6 and CCL11/eotaxin may be suitable biomarkers for the diagnosis of chronic nonbacterial osteomyelitis JF - Frontiers in Pediatrics N2 - Objectives: Chronic recurrent multifocal osteomyelitis (CRMO), the most severe form of chronic nonbacterial osteomyelitis (CNO), is an autoinflammatory bone disorder. In the absence of diagnostic criteria or biomarkers, CNO/CRMO remains a diagnosis of exclusion. The aim of this study was to identify biomarkers for diagnosing multifocal disease (CRMO). Study design: Sera from 71 pediatric CRMO patients, 11 patients with osteoarticular infections, 62 patients with juvenile idiopathic arthritis (JIA), 7 patients with para-infectious or reactive arthritis, and 43 patients with acute leukemia or lymphoma, as well as 59 healthy individuals were collected. Multiplex analysis of 18 inflammation- and/or bone remodeling-associated serum proteins was performed. Statistical analysis included univariate ANOVA, discriminant analysis, univariate receiver operating characteristic (ROC) analysis, and logistic regression analyses. Results: For 14 of 18 blood serum proteins, significant differences were determined between CRMO patients, at least one alternative diagnosis, or healthy controls. Multi-component discriminant analysis delivered five biomarkers (IL-6, CCL11/eotaxin, CCL5/RANTES, collagen Iα, sIL-2R) for the diagnosis of CRMO. ROC analysis allowed further reduction to a core set of 2 biomarkers (CCL11/eotaxin, IL-6) that are sufficient to discern between CRMO, healthy controls, and alternative diagnoses. Conclusion: Serum biomarkers CCL11/eotaxin and IL-6 differentiate between patients with CRMO, healthy controls, and alternative diagnoses (leukemia and lymphoma, osteoarticular infections, para-infectious arthritis, and JIA). Easily accessible biomarkers may aid in diagnosing CRMO. Further studies testing biomarkers in larger unrelated cohorts are warranted. KW - medicine KW - chronic nonbacterial osteomyelitis KW - chronic recurrent multifocal osteomyelitis KW - inflammation KW - biomarker KW - autoinflammation KW - diagnosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172744 VL - 5 ER - TY - JOUR A1 - Alrefai, Hani A1 - Muhammad, Khalid A1 - Rudolf, Ronald A1 - Pham, Duong Anh Thuy A1 - Klein-Hessling, Stefan A1 - Patra, Amiya K. A1 - Avots, Andris A1 - Bukur, Valesca A1 - Sahin,, Ugur A1 - Tenzer, Stefan A1 - Goebeler, Matthias A1 - Kerstan, Andreas A1 - Serfling, Edgar T1 - NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells JF - Nature Communications N2 - Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis. KW - B cells KW - psoriasis KW - interleukins KW - inflammation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173053 VL - 7 ER - TY - JOUR A1 - Gabbert, Lydia A1 - Dilling, Christina A1 - Meybohm, Patrick A1 - Burek, Malgorzata T1 - Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro JF - Frontiers in Pharmacology N2 - Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs. KW - blood-brain barrier KW - protocadherin gamma C3 KW - inflammation KW - oxygen/glucose deprivation KW - stroke KW - tumor necrosis factor-α KW - proliferation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219828 SN - 1663-9812 VL - 11 ER - TY - JOUR A1 - Notz, Quirin A1 - Schmalzing, Marc A1 - Wedekink, Florian A1 - Schlesinger, Tobias A1 - Gernert, Michael A1 - Herrmann, Johannes A1 - Sorger, Lena A1 - Weismann, Dirk A1 - Schmid, Benedikt A1 - Sitter, Magdalena A1 - Schlegel, Nicolas A1 - Kranke, Peter A1 - Wischhusen, Jörg A1 - Meybohm, Patrick A1 - Lotz, Christopher T1 - Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome—An Observational Pilot Study JF - Frontiers in Immunology N2 - Objectives The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results All patients suffered from severe ARDS, 30.8% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and naïve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience. KW - Coronavirus Disease 2019 KW - acute respiratory distress syndrome KW - Severe Acute Respiratory Syndrome Coronavirus 2 KW - cytokines KW - inflammation KW - growth differentiation factor 15 KW - immune response Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212815 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Mahmood, Zafar A1 - Schmalzing, Marc A1 - Dörner, Thomas A1 - Tony, Hans-Peter A1 - Muhammad, Khalid T1 - Therapeutic Cytokine Inhibition Modulates Activation and Homing Receptors of Peripheral Memory B Cell Subsets in Rheumatoid Arthritis Patients JF - Frontiers in Immunology N2 - Memory B cells have known to play an important role in the pathogenesis of rheumatoid arthritis (RA). With the emergence of B cell-targeted therapies, the modulation of memory B cells appears to be a key therapeutic target. Human peripheral memory B cells can be distinguished based on the phenotypic expression of CD27 and IgD, characterizing the three major B cell subpopulations: CD27+IgD+ pre-switch, CD27+IgD- post-switch, and CD27-IgD- double-negative memory B cells. We evaluated different memory cell populations for activation markers (CD95 and Ki-67) and chemokine receptors (CXCR3 and 4) expressing B cells in active RA, as well as under IL6-R blockade by tocilizumab (TCZ) and TNF-α blockade by adalimumab (ADA). Memory B cells were phenotypically analyzed from RA patients at baseline, week 12, and week 24 under TCZ or ADA treatment, respectively. Using flow cytometry, surface expression of CD95, intracellular Ki-67, and surface expressions of CXCR3 and CXCR4 were determined. Compared with healthy donors (n = 40), the phenotypic analysis of RA patients (n = 80) demonstrated that all three types of memory B cells were activated in RA patients. Surface and intracellular staining of B cells showed a significantly higher percentage of CD95+ (p < 0.0001) and Ki-67+ (p < 0.0001) cells, with numerically altered CXCR3+ and CXCR4+ cells in RA. CD95 and Ki-67 expressions were highest in post-switch memory B cells, whereas CD19+CXCR3+ and CD19+CXCR4+ expressing cells were substantially higher in the pre-switch compartment. In all subsets of the memory B cells, in vivo IL-6R, and TNF-α blockade significantly reduced the enhanced expressions of CD95 and Ki-67. Based on our findings, we conclude that the three major peripheral memory B cell populations, pre-, post-switch, and double-negative B cells, are activated in RA, demonstrating enhanced CD95 and Ki-67 expressions, and varied expression of CXCR3 and CXCR4 chemokine receptors when compared with healthy individuals. This activation can be efficaciously modulated under cytokine inhibition in vivo. KW - B cells KW - inflammation KW - adalimumab KW - tocilizumab (IL-6 inhibitor) KW - memory B cells KW - rheumatoid arhritis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212380 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Howangyin, Kiave-Yune A1 - Zlatanova, Ivana A1 - Pinto, Cristina A1 - Ngkelo, Anta A1 - Cochain, Clément A1 - Rouanet, Marie A1 - Vilar, José A1 - Lemitre, Mathilde A1 - Stockmann, Christian A1 - Fleischmann, Bernd K. A1 - Mallat, Ziad A1 - Silvestre, Jean-Sébastien T1 - Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor JF - Circulation N2 - Background: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results: We generated double-deficient mice for Mertk and Mfge8 (Mertk\(^{-/-}\)/Mfge8\(^{-/-}\)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk\(^{-/-}\)), or Mfge8-deficient (Mfge8\(^{-/-}\)) animals, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C\(^{High and Low}\) monocytes and macrophages. In parallel, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C\(^{High}\) and Ly6C\(^{Low}\) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C\(^{High}\)/Ly6C\(^{Low}\) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre\(^+\)/VEGFA\(^{fl/fl}\) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. KW - inflammation KW - macrophages KW - myocardial infarction KW - myocarditis KW - neovascularization, physiologic Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190755 VL - 133 IS - 9 ER -