TY - JOUR A1 - Buchhorn, Reiner A1 - Baumann, Christoph A1 - Willaschek, Christian T1 - Pathophysiological mechanisms of bradycardia in patients with anorexia nervosa JF - Health Science Reports N2 - Background The purpose of this investigation was to examine heart rate variability (HRV), interbeat interval (IBI), and their interrelationship in healthy controls, bradycardic hyperpolarization‐activated cyclic nucleotide‐gated channel 4 (HCN4) mutation carriers, and patients with anorexia nervosa (AN). We tested the hypothesis that neural mechanisms cause bradycardia in patients with AN. Therefore, we assumed that saturation of the HRV/IBI relationship as a consequence of sustained parasympathetic control of the sinus node is exclusively detectable in patients with AN. Methods Patients with AN between the ages of 12 and 16 years admitted to our hospital due to malnutrition were grouped and included in the present investigation (N = 20). A matched‐pair group with healthy children and adolescents was created. Groups were matched for age and sex. A 24‐hour Holter electrocardiography (ECG) was performed in controls and patients. More specifically, all patients underwent two 24‐hour Holter ECG examinations (admission; refeeding treatment). Additionally, the IBI was recorded during the night in HCN4 mutation carriers (N = 4). HRV parameters were analyzed in 5‐minute sequences during the night and plotted against mean corresponding IBI length. HRV, IBI, and their interrelationship were examined using Spearman's rank correlation analyses, Mann‐Whitney U tests, and Wilcoxon signed‐rank tests. Results The relationship between IBI and HRV showed signs of saturation in patients with AN. Furthermore, signs of HRV saturation were present in two HCN4 mutation carriers. In contrast, signs of HRV saturation were not present in controls. Conclusions The existence of HRV saturation does not support the existence of parasympathetically mediated bradycardia. Nonneural mechanisms, such as HCN4 downregulation, may be responsible for bradycardia and HRV saturation in patients with AN. KW - adolescent KW - anorexia nervosa KW - autonomic nervous system KW - electrocardiography KW - heart rate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244724 VL - 4 IS - 3 ER - TY - JOUR A1 - Nordbeck, Peter A1 - Bönhof, Leoni A1 - Hiller, Karl-Heinz A1 - Voll, Sabine A1 - Arias-Loza, Paula A1 - Seidlmaier, Lea A1 - Williams, Tatjana A1 - Ye, Yu-Xiang A1 - Gensler, Daniel A1 - Pelzer, Theo A1 - Ertl, Georg A1 - Jakob, Peter M. A1 - Bauer, Wolfgang R. A1 - Ritter, Oliver T1 - Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats JF - PLoS ONE N2 - Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients. KW - heart rate KW - body weight KW - surgical and invasive medical procedures KW - magnetic resonance imaging KW - blood KW - vascular surgery KW - myocardial infarction KW - cardiac ventricles Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130064 VL - 8 IS - 8 ER - TY - JOUR A1 - Paakkari, P. A1 - Paakkari, I. A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Evidence for differential opioid µ\(_1\)- and µ\(_2\)-receptor regulation of heart rate in the conscious rat N2 - The possibility that \(\mu\)Opioid-induced tachycardia and bradycardia could be mediated by different subtypes of the \(\mu\)·receptor was studied in conscious Sprague-Dawley rats. The selective \(\mu\)·receptor agonist dermorphin and its analog, TAPS (Tyr-o-Arg-Phe-sarcosine), a putative \(\mu _1\)-receptor agonist, were given centrally. Tyr-o-Arg-Phe-sarcosine increased the heart rate, the response being inversely correlated to the dose (an increase of 71 ± 22, 49 ± 14 and 30 ± 17 beats/min at doses of 0.3, 3 and 30 pmol, respectively). Dermorphin induced less clear changes in heart rate (maximum increase of 39 ± 14 beats/min at the dose of 1 pmol). Aftertreatment with the Jl 1-selective antagonist naloxonazine (NAZ), TAPS 30 pmol and dennorphin I pmol decreased heart rate by -22 ± 10 and -24 ± 7 bpm, respectively. The bradycardic effect oflarger doses of dennorphin was potentiated by NAZ (from -25 ± 8 to -97 ± 22 bpm) but abolished by the non-selective antagonist naloxone. These data suggest that the high affinity \(\mu _1\)-opioid receptors mediate tachycardic responses and \(\mu _2\)-receptors mediate bradycardic responses. KW - Neurobiologie KW - dennorphin KW - naloxonazine KW - naloxone KW - heart rate KW - blood pressure KW - µ·Opioid receptor subtypes Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63017 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - Hypothalamic opioid µ-receptors regulate discrete hemodynamic functions in the conscious rat N2 - The effect of the selective \(\mu\)-opioid agonist o-Ala\(^2\)-Me-Phe\(^4\)-Gly-ol'-enkephalin (DAGO), injected into the medial preoptic nucleus of hypothalamus, on cardiac output and regional blood flow was studied in the conscious rat and the effect of DAGO on renal sympathetic nerve activity and renal blood flow was studied in anesthetized rats. In conscious rats, injections of DAGO (1 or 10 nmol) into the preoptic nucleus increased the blood pressure in a dose-related manner. The maximum rises of mean arterial pressure and pulse pressure after the larger dose were +23 ± 5 mmHg (mean ±SEM, P < 0.01) and + 17 ± 3 mmHg(P < 0.01), respectively. A small dose (0.1 nmol) increased heart rate ( +47 ± 13 bpm, P < 0.05); thc 1 nmol dosc produced bradycardia (- 39 ± 11 bpm, P < 0.05), while the 10 nmol dose initially decreased heart rate ( -68 ± 15 bpm (P < 0.01) and then gradually increased heart rate to a maximum of + 74 ± 13 bpm, (P < 0.0 1). A long-lasting increase in cardiac output was also elicited by DAGO, with maximum changes after 1 and 10 nmol of + 14 ± 6% and +22 ± 7% (P < 0.01), respectively. B1ood flow in the hindquarters increascd after DAGO but the mesenteric and renal blood ftow decreased in a dose-related manner. Significant responscs in hindquarter and mesenteric blood fl.ow after DAGO were independent of systemic hemodynamic responses at the dose ofO.l nmol. The vascular resistance in the hindquarters significantly decreased after a small dose of DAGO while the larger doses dose-dependently increased mesenteric and renal vascular resistance. A crucial role of the sympathetic nervous system in the hemodynamic effects of DAGO was demonstrated: (1) by the profound activation of renal sympathetic nerve activity after injections of DAGO (I nmol/100 nl) into the preoptic nucleus, (2) by blockade of the pressor, tachycardic and regional hemodynamic effects of DAGO (I nmol) by the ganglion blocker ch1orisondamine (5 mg/kg i.v.). The results suggest that the pressor effect of DAGO in preoptic nucleus is due primarily to an increase in cardiac output. The differential changes in blood ftow in organs further suggest that the opioid \(\mu\)-receptors in the preoptic nucleus might be involved in the integration of peripheral blood ftow in the hypothalamus during affective behavior. KW - Neurobiologie KW - chlorisondamine KW - blood pressure KW - heart rate KW - cardiac output KW - regional blood ftow KW - sympathetic nerve activity. Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63069 ER - TY - JOUR A1 - Stegmann, Yannik A1 - Andreatta, Marta A1 - Wieser, Matthias J. T1 - The effect of inherently threatening contexts on visuocortical engagement to conditioned threat JF - Psychophysiology N2 - Fear and anxiety are crucial for adaptive responding in life‐threatening situations. Whereas fear is a phasic response to an acute threat accompanied by selective attention, anxiety is characterized by a sustained feeling of apprehension and hypervigilance during situations of potential threat. In the current literature, fear and anxiety are usually considered mutually exclusive, with partially separated neural underpinnings. However, there is accumulating evidence that challenges this distinction between fear and anxiety, and simultaneous activation of fear and anxiety networks has been reported. Therefore, the current study experimentally tested potential interactions between fear and anxiety. Fifty‐two healthy participants completed a differential fear conditioning paradigm followed by a test phase in which the conditioned stimuli were presented in front of threatening or neutral contextual images. To capture defense system activation, we recorded subjective (threat, US‐expectancy), physiological (skin conductance, heart rate) and visuocortical (steady‐state visual evoked potentials) responses to the conditioned stimuli as a function of contextual threat. Results demonstrated successful fear conditioning in all measures. In addition, threat and US‐expectancy ratings, cardiac deceleration, and visuocortical activity were enhanced for fear cues presented in threatening compared with neutral contexts. These results are in line with an additive or interactive rather than an exclusive model of fear and anxiety, indicating facilitated defensive behavior to imminent danger in situations of potential threat. KW - anxiety KW - EEG KW - emotion KW - fear KW - heart rate KW - ssVEP Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312465 VL - 60 IS - 4 ER - TY - JOUR A1 - Wiemer, Julian A1 - Rauner, Milena M. A1 - Stegmann, Yannik A1 - Pauli, Paul T1 - Reappraising fear: is up-regulation more efficient than down-regulation? JF - Motivation and Emotion N2 - Catastrophizing thoughts may contribute to the development of anxiety, but functional emotion regulation may help to improve treatment. No study so far directly compared up- and down-regulation of fear by cognitive reappraisal. Here, healthy individuals took part in a cued fear experiment, in which multiple pictures of faces were paired twice with an unpleasant scream or presented as safety stimuli. Participants (N = 47) were asked (within-subjects) to down-regulate, to up-regulate and to maintain their natural emotional response. Valence and arousal ratings indicated successful up- and down-regulation of the emotional experience, while heart rate and pupil dilation increased during up-regulation, but showed no reduction in down-regulation. State and trait anxiety correlated with evaluations of safety but not threat stimuli, which supports the role of deficient safety learning in anxiety. Reappraisal did not modulate this effect. In conclusion, this study reveals evidence for up-regulation effects in fear, which might be even more efficient than down-regulation on a physiological level and highlights the importance of catastrophizing thoughts for the maintenance of fear and anxiety. KW - anxiety KW - fear conditioning KW - cognitive reappraisal KW - pupil diameter KW - heart rate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269187 SN - 1573-6644 VL - 45 IS - 2 ER - TY - JOUR A1 - Zillig, Anna-Lena A1 - Pauli, Paul A1 - Wieser, Matthias A1 - Reicherts, Philipp T1 - Better safe than sorry? - On the influence of learned safety on pain perception JF - PloS One N2 - The experience of threat was found to result—mostly—in increased pain, however it is still unclear whether the exact opposite, namely the feeling of safety may lead to a reduction of pain. To test this hypothesis, we conducted two between-subject experiments (N = 94; N = 87), investigating whether learned safety relative to a neutral control condition can reduce pain, while threat should lead to increased pain compared to a neutral condition. Therefore, participants first underwent either threat or safety conditioning, before entering an identical test phase, where the previously conditioned threat or safety cue and a newly introduced visual cue were presented simultaneously with heat pain stimuli. Methodological changes were performed in experiment 2 to prevent safety extinction and to facilitate conditioning in the first place: We included additional verbal instructions, increased the maximum length of the ISI and raised CS-US contingency in the threat group from 50% to 75%. In addition to pain ratings and ratings of the visual cues (threat, safety, arousal, valence, and contingency), in both experiments, we collected heart rate and skin conductance. Analysis of the cue ratings during acquisition indicate successful threat and safety induction, however results of the test phase, when also heat pain was administered, demonstrate rapid safety extinction in both experiments. Results suggest rather small modulation of subjective and physiological pain responses following threat or safety cues relative to the neutral condition. However, exploratory analysis revealed reduced pain ratings in later trials of the experiment in the safety group compared to the threat group in both studies, suggesting different temporal dynamics for threat and safety learning and extinction, respectively. Perspective: The present results demonstrate the challenge to maintain safety in the presence of acute pain and suggest more research on the interaction of affective learning mechanism and pain processing. KW - pain KW - pain sensation KW - functional electrical stimulation KW - heart rate KW - sensory cues KW - learning KW - emotions KW - behavioral conditioning Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349905 VL - 18 IS - 11 ER -