TY - JOUR A1 - Hecht, Markus A1 - Leowanawat, Pawaret A1 - Gerlach, Tabea A1 - Stepanenko, Vladimir A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self‐Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra‐Bay‐Acyloxy Perylene Bisimide JF - Angewandte Chemie International Edition N2 - A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self‐assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen‐bond‐directed self‐assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid‐crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo‐ or heterochiral self‐assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self‐sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self‐assemblies proceeds by dissociation via the monomeric state. KW - liquid crystals KW - noncovalent interactions KW - self-assembly KW - structure elucidation KW - supramolecular chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224586 VL - 59 IS - 39 SP - 17084 EP - 17090 ER - TY - JOUR A1 - Lambov, Martin A1 - Hensiek, Nicola A1 - Pöppler, Ann‐Christin A1 - Lehmann, Matthias T1 - Columnar Liquid Crystals from Star‐Shaped Conjugated Mesogens as Nano‐Reservoirs for Small Acceptors JF - ChemPlusChem N2 - Shape‐persistent conjugated mesogens with oligothiophene arms of different lengths have been synthesized. Such mesogens possess free intrinsic space between their conjugated arms. They form columnar liquid‐crystalline phases, in which the void is filled by dense helical packing in the neat phase similar to an oligo(phenylene vinylene) derivative of equal size. The void can also be compensated by the inclusion of the small acceptor molecule 2,4,7‐trinitrofluorenone. In solution, the acceptor interacts with the core as the largest π‐surface, while in the solid material, it is incorporated between the arms and sandwiched by the star‐shaped neighbours along the columnar assemblies. The TNF acceptors are not nanosegregated from the star‐shaped donors, thus the liquid crystal structure converts to a nano‐reservoir for TNF (endo‐receptor). These host–guest arrangements are confirmed by comprehensive X‐ray scattering experiments and solid‐state NMR spectroscopy. This results in ordered columnar hexagonal phases at high temperatures, which change to helical columnar mesophases or to columnar soft crystals at room temperature. KW - donor-acceptor interactions KW - host-guest systems KW - intrinsic free space KW - liquid crystals KW - mesogens Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218014 VL - 85 IS - 10 SP - 2219 EP - 2229 ER - TY - JOUR A1 - Lehmann, Matthias A1 - Dechant, Moritz A1 - Weh, Dominik A1 - Freytag, Emely T1 - Metal Phthalocyanine−Fullerene Dyads: Promising Lamellar Columnar Donor−Acceptor Liquid Crystal Phases JF - ChemPlusChem N2 - Liquid crystal (LC) shape‐amphiphiles with a disc tethered to a fullerene have been intensely studied for the application in photovoltaics, and helical nanosegregation of C\(_{60}\) has been claimed around the π‐stacking disks based on X‐ray results. The most promising materials reported to date have been resynthesized and studied comprehensively by XRS, density measurements, modelling, and electron density reconstruction. In contrast to previous reports, the results indicate that metal phthalocyanine−fullerene mesogens pack in lamellar columnar phases with p2gm symmetry. Fullerenes assemble in layers and are flanked by phthalocyanine columns, thus explaining the balanced charge carrier mobility of electrons and holes. Such variable donor−acceptor structures are promising for organic electronic applications. KW - Donor−acceptor dyads KW - fullerenes KW - liquid crystals KW - nanosegregation KW - shape-amphiphiles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218531 VL - 85 IS - 8 SP - 1934 EP - 1938 ER -