TY - JOUR A1 - Fischer, Sabine C. A1 - Schardt, Simon A1 - Lilao-Garzón, Joaquín A1 - Muñoz-Descalzo, Silvia T1 - The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors JF - iScience N2 - Summary Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos. Highlights • The local cell neighborhood and global ICM population composition correlate • ICM cells show characteristics of local clustering in early and mid mouse blastocysts • ICM patterning requires integration of signals from cells beyond the first neighbors KW - mouse blastocysts KW - cellular physiology KW - developmental biology KW - salt-and-pepper pattern KW - signaling KW - local cell neighborhood KW - ICM cells Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350184 VL - 26 IS - 11 ER - TY - JOUR A1 - Preising, Christina A1 - Schneider, Reinhard A1 - Bucher, Michael A1 - Gekle, Michael A1 - Sauvant, Christoph T1 - Regulation of expression of renal organic anion transporters OAT1 and OAT3 in a model of ischemia/reperfusion injury JF - Cellular Physiology and Biochemistry N2 - Background: Recently, we gained evidence that impairment of rOat1 and rOat3 expression induced by ischemic acute kidney injury (AKI) is mediated by COX metabolites and this suppression might be critically involved in renal damage. Methods: (i) Basolateral organic anion uptake into proximal tubular cells after model ischemia and reperfusion (I/R) was investigated by fluorescein uptake. The putative promoter sequences from hOAT1 (SLC22A6) and hOAT3 (SCL22A8) were cloned into a reporter plasmid, transfected into HEK cells and (ii) transcriptional activity was determined after model ischemia and reperfusion as a SEAP reporter gen assay. Inhibitors or antagonists were applied with the beginning of reperfusion. Results: By using inhibitors of PKA (H89) and PLC (U73122), antagonists of E prostanoid receptor type 2 (AH6809) and type 4 (L161,982), we gained evidence that I/R induced down regulation of organic anion transport is mediated by COX1 metabolites via E prostanoid receptor type 4. The latter signaling was confirmed by application of butaprost (EP2 agonist) or TCS2510 (EP4 agonist) to control cells. In brief, the latter signaling was verified for the transcriptional activity in the reporter gen assay established. Therein, selective inhibitors for COX1 (SC58125) and COX2 (SC560) were also applied. Conclusion: Our data show (a) that COX1 metabolites are involved in the regulation of renal organic anion transport(ers) after I/R via the EP4 receptor and (b) that this is due to transcriptional regulation of the respective transporters. As the promoter sequences cloned were of human origin and expressed in a human renal epithelial cell line we (c) hypothesize that the regulatory mechanisms described after I/R is meaningful for humans as well. KW - opossum kidney cells KW - prostaglandin e2 KW - reperfusion KW - transport experiments KW - translation KW - reporter gen assay KW - cloning of putative human promoter sequence KW - regulation of expression KW - OAT1 KW - OAT3 KW - OK cells KW - ischemic acute kidney injury model KW - HEK cells KW - ischemia KW - down regulation KW - nitric oxide KW - cellular physiology KW - cortical OAT1 KW - blood flow Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144504 VL - 37 IS - 1 ER -