TY - JOUR A1 - Huestegge, Lynn A1 - Böckler, Anne T1 - Out of the corner of the driver's eye: Peripheral processing of hazards in static traffic scenes JF - Journal of Vision N2 - Effective gaze control in traffic, based on peripheral visual information, is important to avoid hazards. Whereas previous hazard perception research mainly focused on skill-component development (e.g., orientation and hazard processing), little is known about the role and dynamics of peripheral vision in hazard perception. We analyzed eye movement data from a study in which participants scanned static traffic scenes including medium-level versus dangerous hazards and focused on characteristics of fixations prior to entering the hazard region. We found that initial saccade amplitudes into the hazard region were substantially longer for dangerous (vs. medium-level) hazards, irrespective of participants' driving expertise. An analysis of the temporal dynamics of this hazard-level dependent saccade targeting distance effect revealed that peripheral hazard-level processing occurred around 200–400 ms during the course of the fixation prior to entering the hazard region. An additional psychophysical hazard detection experiment, in which hazard eccentricity was manipulated, revealed better detection for dangerous (vs. medium-level) hazards in both central and peripheral vision. Furthermore, we observed a significant perceptual decline from center to periphery for medium (but not for highly) dangerous hazards. Overall, the results suggest that hazard processing is remarkably effective in peripheral vision and utilized to guide the eyes toward potential hazards. KW - traffic KW - hazard perception KW - visual orientation KW - eye movements KW - peripheral vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147726 VL - 16 IS - 11 ER - TY - JOUR A1 - Schneider, Norbert A1 - Huestegge, Lynn T1 - Interaction of oculomotor and manual behavior: evidence from simulated driving in an approach–avoidance steering task JF - Cognitive Research: Principles and Implications N2 - Background While the coordination of oculomotor and manual behavior is essential for driving a car, surprisingly little is known about this interaction, especially in situations requiring a quick steering reaction. In the present study, we analyzed oculomotor gaze and manual steering behavior in approach and avoidance tasks. Three task blocks were implemented within a dynamic simulated driving environment requiring the driver either to steer away from/toward a visual stimulus or to switch between both tasks. Results Task blocks requiring task switches were associated with higher manual response times and increased error rates. Manual response times did not significantly differ depending on whether drivers had to steer away from vs toward a stimulus, whereas oculomotor response times and gaze pattern variability were increased when drivers had to steer away from a stimulus compared to steering toward a stimulus. Conclusion The increased manual response times and error rates in mixed tasks indicate performance costs associated with cognitive flexibility, while the increased oculomotor response times and gaze pattern variability indicate a parsimonious cross-modal action control strategy (avoiding stimulus fixation prior to steering away from it) for the avoidance scenario. Several discrepancies between these results and typical eye–hand interaction patterns in basic laboratory research suggest that the specific goals and complex perceptual affordances associated with driving a vehicle strongly shape cross-modal control of behavior. KW - steering KW - driving simulation KW - gaze control KW - visual orientation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200419 VL - 4 ER -