TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Derakhshani, Shaghayegh T1 - Measles virus infection enhances dendritic cell migration in a 3D environment T1 - Die Masernvirusinfektion verstärkt die Migration dendritischer Zellen in einer 3D-Umgebung N2 - The respiratory system is amongst the most important compartments in the human body. Due to its connection to the external environment, it is one of the most common portals of pathogen entry. Airborne pathogens like measles virus (MV) carried in liquid droplets exhaled from the infected individuals via a cough or sneeze enter the body from the upper respiratory tract and travel down to the lower respiratory tract and reach the alveoli. There, pathogens are captured by the resident dendritic cells (DCs) or macrophages and brought to the lymph node where immune responses or, as in case of MV, dissemination via the hematopoietic cell compartment are initiated. Basic mechanisms governing MV exit from the respiratory tract, especially virus transmission from infected immune cells to the epithelial cells have not been fully addressed before. Considering the importance of these factors in the viral spread, a complex close-to-in-vivo 3D human respiratory tract model was generated. This model was established using de-cellularized porcine intestine tissue as a biological scaffold and H358 cells as targets for infection. The scaffold was embedded with fibroblast cells, and later on, an endothelial cell layer seeded at the basolateral side. This provided an environment resembling the respiratory tract where MV infected DCs had to transmigrate through the collagen scaffold and transmit the virus to epithelial cells in a Nectin-4 dependent manner. For viral transmission, the access of infected DCs to the recipient epithelial cells is an essential prerequisite and therefore, this important factor which is reflected by cell migration was analyzed in this 3D system. The enhanced motility of specifically MV-infected DCs in the 3D models was observed, which occurred independently of factors released from the other cell types in the models. Enhanced motility of infected DCs in 3D collagen matrices suggested infection-induced cytoskeletal remodeling, as also verified by detection of cytoskeletal polarization, uropod formation. This enforced migration was sensitive to ROCK inhibition revealing that MV infection induces an amoeboid migration mode in DCs. In support of this, the formation of podosome structures and filopodia, as well as their activity, were reduced in infected DCs and retained in their uninfected siblings. Differential migration modes of uninfected and infected DCs did not cause differential maturation, which was found to be identical for both populations. As an underlying mechanism driving this enforced migration, the role of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) was studied in MV-exposed cultures. It was shown in this thesis that MV-infection increased S1P production, and this was identified as a contributing factor as inhibition sphingosine kinase activity abolished enforced migration of MV-infected DCs. These findings revealed that MV infection induces a fast push-and-squeeze amoeboid mode of migration, which is supported by SphK/S1P axis. However, this push-and-squeeze amoeboid migration mode did not prevent the transendothelial migration of MV-infected DCs. Altogether, this 3D system has been proven to be a suitable model to study specific parameters of mechanisms involved in infections in an in vivo-like conditions. N2 - Die respiratorische System ist ein wesentlicher physiologischer Bestandteil. Durch die direkte und konstante Verbindung der Atemwege mit der äußeren Umgebung sind sie einer der häufigsten Pfade für den Eintritt von Krankheitserregern in den Körper. Luftübertragene Krankheitserreger wie das Masern-Virus (MV), das in Flüssigkeitströpfchen mitgeführt und von Patienten durch Husten oder Niesen ausgeatmet wird, können über die oberen Atemwege in den Körper gelangen und sich bis in die unteren Atemwege und bis zu den Alveolen ausbreiten. Dort werden diese Krankheitserreger von den dort residenten dendritischen Zellen (DC) oder Makrophagen erworben und zu sekundären lymphatischen Organen transportiert, in denen sowohl virus-spezifische Immunantworten, aber auch – wie im Falle von MV – die hämatogene Dissemination initiiert wird. Der Austrittsmechanismus des MV aus den Atemwegen, insbesondere dessen Übertragung von infizierten Immunzellen auf die Epithelzellen und die Faktoren, die diesen Ablauf bestimmen, wurden jedoch bisher unzureichend untersucht. In Anbetracht der Bedeutung dieser Faktoren für die Virusausbreitung wurde ein komplexes, realitätsnahes in-vivo 3D-Modell der menschlichen Atemwege erstellt. Dieses Modell wurde unter Verwendung von de-zellularisiertem Schweinedarmgewebe als biologischem Gerüst und H358 Epithelzellen als Empfänger etabliert. Dieses Grundgerüst wurde mit Fibroblastenzellen eingebettet. Später wurde auf der basolateralen Seite der Modelle eine Endothelzellschicht eingebracht, um eine Umgebung zu schaffen, die der der Atemwege ähnelt. Somit mussten die Virus-Donoren, MV-infizierte DC durch das Kollagengerüst wandern und das Virus auf Epithelzellen in einer Nektin-4 abhängigen Weise übertragen. Für die Virusübertragung ist der Zugang infizierter DC zu den Empfänger-Epithelzellen eine wesentliche Voraussetzung, weshalb dieser wichtige Faktor, der sich in der Zellmigration widerspiegelt, in diesem 3D-System analysiert wurde. Eine erhöhte Beweglichkeit spezifisch MV-infizierter DCs wurde in den 3D-Modellen beobachtet. Dies erwies sich als unabhängig von löslichen Faktoren der anderen Zelltypen in den Modellen. Erhöhte Beweglichkeit infizierten DCs wurde auch in 3D-Kollagenmatrizes gesehen, was auf einen infektionsvermittelten zytoskelettalen Umbau hindeutete, der auch anhand von Zytoskelettpolarisation und Uropodbildung bestätigt wurde. Die MV-Infektion induzierte einen schnellen amöboiden Migrationsmodus in den DCs, der sich als sensitiv gegenüber ROCK-Hemmung erwies. Im Gegensatz zu uninfizierten DCs gleichen Reifungsstadiums waren in infizierten DCs Podosomenstrukturen und Filopodien sowie deren Aktivität stark reduziert. Als potentiell zur verstärkten Motilität infizierter DCs beitragender Faktor wurde die Rolle der Sphingosinkinase (SphK) und des Sphingosin-1-phosphats (S1P) in MV-exponierten Kulturen untersucht. In dieser Arbeit wurde gezeigt, dass die S1P-Produktion durch eine MV-Infektion erhöht wurde, und in der Tat zur für infizierte DCs beobachteten erhöhten Geschwindigkeit beitrug, da diese sensitiv gegenüber Hemmung der Sphingosinkinase-Aktivität war. Diese Ergebnisse zeigen, dass die MV-Infektion einen schnellen amöboid-artigen Migrationsmodus induziert, der von der SphK/S1P-Achse unterstützt wird. Dieser Push-and-Squeeze-Amoeboid-Migrationsmodus verhinderte jedoch nicht die transendotheliale Migration von MV-infizierten DCs. Insgesamt hat sich dieses 3D-System als geeignetes Modell erwiesen, um die spezifische Parameter von Mechanismen von Infektionen in einem in-vivo-ähnlichen Zustand zu untersuchen. KW - Dendritische Zelle KW - Zell Migration KW - Masern-Virus KW - 3D-Modell KW - Sphingosine-1-phosphats KW - Dendritic cell KW - Cell migration KW - Measles virus KW - 3D tissue model KW - Tissue engineering KW - Sphingosine-1-phosphate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189182 ER - TY - JOUR A1 - Derakhshani, Shaghayegh A1 - Kurz, Andreas A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Pilgram, Lisa A1 - Steinke, Maria A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle A1 - Avota, Elita T1 - Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium JF - Frontiers in Immunology N2 - Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit. KW - dendritic cell KW - cell migration KW - measles virus KW - 3D tissue model KW - sphingosine-1-phosphate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201818 VL - 10 IS - 1294 ER - TY - JOUR A1 - Däullary, Thomas A1 - Imdahl, Fabian A1 - Dietrich, Oliver A1 - Hepp, Laura A1 - Krammer, Tobias A1 - Fey, Christina A1 - Neuhaus, Winfried A1 - Metzger, Marco A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Saliba, Antoine-Emmanuel A1 - Zdzieblo, Daniela T1 - A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection JF - Gut Microbes N2 - Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay. KW - intestinal enteroids KW - biological scaffold KW - Salmonella Typhimurium KW - OLFM4 KW - NOTCH KW - filamentous Salmonella Typhimurium KW - bacterial migration KW - bacterial virulence KW - 3D tissue model KW - olfactomedin 4 KW - infection Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350451 VL - 15 IS - 1 ER - TY - JOUR A1 - Herbert, Saskia-Laureen A1 - Fick, Andrea A1 - Heydarian, Motaharehsadat A1 - Metzger, Marco A1 - Wöckel, Achim A1 - Rudel, Thomas A1 - Kozjak-Pavlovic, Vera A1 - Wulff, Christine T1 - Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer JF - Journal of Tissue Engineering N2 - Ovarian cancer is the second most common gynecological malignancy in women. More than 70% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer. KW - ovarian cancer KW - 3D tissue model KW - co-culture KW - peritoneal metastasis KW - cancer dissemination Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301311 SN - 2041-7314 VL - 13 ER - TY - THES A1 - Heydarian, Motaharehsadat T1 - Development of human 3D tissue models for studying \(Neisseria\) \(gonorrhoeae\) infection T1 - Entwicklung menschlicher 3D-Gewebemodelle zur Untersuchung der Infektion mit \(Neisseria\) \(gonorrhoeae\) N2 - Gonorrhea is the second most common sexually transmitted infection worldwide and is caused by Gram-negative, human-specific diplococcus Neisseria gonorrhoeae. It colonizes the mucosal surface of the female reproductive tract and the male urethra. A rapid increase in antibiotic resistance makes gonorrhea a serious threat to public health worldwide. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are not able to recapitulate all the features of infection. Therefore, a realistic in vitro cell culture model is urgently required for studying the gonorrhea infection. In this study, we established and characterized three independent 3D tissue models based on the porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. The histological, immunohistochemical, and ultra-structural analysis showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in the human host including the formation of epithelial monolayer, underlying connective tissue, mucus production, tight junction (TJ), and microvilli. In addition, functional analysis such as transepithelial electrical resistance (TEER) and barrier permeability indicated high barrier integrity of the cell layer. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results showed disruption of TJs and growing the interleukins production in response to the infection, which depends on the type of strain and cell. In addition, the 3D tissue models supported bacterial survival, which provided an appropriate in vitro model for long-term infection study. This could be mainly because of the high resilience of the 3D tissue models based on the SIS scaffold to the infection in terms of alteration in permeability, cell destruction, and bacterial transmigration. During gonorrhea infection, a high level of neutrophils migrates to the site of infection. The studies also showed that N. gonorrhoeae can survive or even replicate inside the neutrophils. Therefore, studying the interaction between neutrophils and N. gonorrhoeae is substantially under scrutiny. For this purpose, we generated a 3D tissue model by triple co-culturing of human primary fibroblast cells, human colorectal carcinoma cells, and human umbilical vein endothelial cells. The tissue model was subsequently infected by N. gonorrhoeae. A perfusion-based bioreactor system was employed to recreate blood flow in the side of endothelial cells and consequently study human neutrophils transmigration to the site of infection. We observed neutrophils activation upon the infection. Furthermore, we demonstrated the uptake of N. gonorrhoeae by human neutrophils and reverse transmigration of neutrophils to the basal side carrying N. gonorrhoeae. In summary, the introduced 3D tissue models in this research represent a promising tool to investigate N. gonorrhoeae infections under close-to-natural conditions. N2 - Tripper ist die zweithäufigste sexuell übertragbare Krankheit weltweit und wird durch Gram negative, humanspezifische Diplokokken Neisseria gonorrhoeae verursacht. Das human Pathogen besiedelt die Schleimhautoberfläche des weiblichen Fortpflanzungstraktes und der männlichen Harnröhre. Die rasante Zunahme der Antibiotikaresistenzen macht Gonorrhö zu einer ernsthaften Bedrohung für die öffentliche Gesundheit weltweit. Da N. gonorrhoeae ein humanspezifischer Erreger ist, ist es nicht möglich alle Merkmale einer Infektion in Tiermodellen nachzustellen, daher ist ein realistisches In-vitro-Zellkulturmodell für die Untersuchung der Gonorrhö-Infektion dringend erforderlich. In dieser Studie haben wir drei unabhängige 3D- Gewebemodelle etabliert und charakterisiert, die auf dem Gerüst der Schweine-Submukosa (SIS) basieren, indem wir menschliche dermale Fibroblasten mit menschlichen Darmkrebs-, Endometrialepithel- und männlichen Uroepithelzellen kultivieren. Die histologischen, immunhistochemischen und ultrastrukturellen Analysen zeigten, dass die 3D SIS-Gerüstmodelle die Hauptmerkmale der Stelle der Gonokokken Infektion im menschlichen Wirt genau nachahmen, indem sich Epithelien Monoschichten ausbildeten, unter denen sich Bindegewebe erstrechte. Zudem wiesen die Zellen enge Zell-Zell Kontakte auf und es kam zur Produktion von einer Mukosaschicht sowie Mikrovilli in den Modellen. Darüber hinaus zeigten Funktionsanalysen wie die Messung des transepithelialen elektrischen Widerstands (TEER) und die der Barriere Durchlässigkeit eine hohe Barriere Integrität der Zellschicht. Wir haben die etablierten 3D- Gewebemodelle mit verschiedenen N. gonorrhoeae-Stämmen und Derivaten infiziert, die verschiedene Phänotypen bezüglich der Adhäsion und der Invasion aufwiesen. Die Ergebnisse zeigten eine Unterbrechung der engen Zellverbindungen und eine Zunahme der Interleukin Produktion als Reaktion auf die Infektion, dessen Ausprägung allerdings stark von der Art des Stammes und des verwendeten Zelltyps abhängig ist. Darüber hinaus unterstützten die 3D- Gewebemodelle das bakterielle Überleben, was ein geeignetes In-vitro-Modell für Langzeit- Infektionsstudien liefert. Dies könnte vor allem auf die hohe Widerstandsfähigkeit der SIS- Gerüstmodelle gegen Infektionen in Bezug auf Veränderung der Permeabilität, Zellzerstörung und Bakterienwanderung zurückzuführen sein. Während der Gonorrhoe-Infektion wandert ein hoher Anteil an Neutrophilen an den Ort der Infektion. Die Studie zeigte auch, dass N. gonorrhoeae in den Neutrophilen überleben konnten oder sich sogar in diesen vermehren konnten. Deshalb wurde besonderes die Interaktion zwischen Neutrophilen und N. gonorrhoeae näher betrachtet. Zu diesem Zweck haben wir ein 3D-Gewebemodell mit Hilfe einer dreifache Co-Kultivierung von menschlichen primären Fibroblasten Zellen, menschlichen kolorektalen Karzinomzellen und menschlichen Nabelvenenendothelzellen erstellt. Das Gewebemodell wurde anschließend mit N. gonorrhoeae infiziert. Ein perfusionsbasiertes Bioreaktorsystem wurde eingesetzt, um den Blutfluss auf der Seite der Endothelzellen nachzuahmen und somit konnte die Auswanderung menschlicher Neutrophile zur Infektionsstelle untersucht werden. Darüber hinaus konnte mit diesem Modell die Aufnahme von N. gonorrhoeae in menschliche Neutrophilen und deren Rückwanderung in den Blutfluss beladen mit N. gonorrhoeae nachgewiesen werden. Zusammenfassend lässt sich sagen, dass das in dieser Forschung vorgestellte 3D-Gewebemodell ein vielversprechendes Instrument zur Untersuchung von N. gonorrhoeae-Infektionen unter naturnahen Bedingungen darstellt. KW - 3D-Gewebemodell KW - 3D tissue model KW - Neisseria gonorrhoeae KW - Co-Kultur KW - Bioreaktor KW - Neutrophil KW - co-culture KW - bioreactor KW - neutrophil Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204967 ER - TY - JOUR A1 - Heydarian, Motaharehsadat A1 - Yang, Tao A1 - Schweinlin, Matthias A1 - Steinke, Maria A1 - Walles, Heike A1 - Rudel, Thomas A1 - Kozjak-Pavlovic, Vera T1 - Biomimetic human tissue model for long-term study of Neisseria gonorrhoeae infection JF - Frontiers in Microbiology N2 - Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions. KW - 3D tissue model KW - small intestinal submucosa scaffold KW - co-culture KW - infection KW - Neisseria gonorrhoeae Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197912 SN - 1664-302X VL - 10 IS - 1740 ER -