TY - THES A1 - Peindl, Matthias T1 - Refinement of 3D lung cancer models for automation and patient stratification with mode-of-action studies T1 - Weiterentwicklung von 3D Lungentumormodellen zur Automatisierung und Patienten-Stratifizierung mit Untersuchungen zur Wirkungsweise N2 - Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances. One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 % are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered “undruggable” in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments. Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs. Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system. N2 - Lungentumoren sind die Hauptursache für krebsbedingte Todesfälle weltweit. Trotz der Verfügbarkeit diverser zielgerichteter Therapien und Immuntherapien im klinischen Alltag ist die Prognose für Lungenkrebs nach wie vor schlecht. Eine Hauptursache hierfür sind intrinsische und erworbene Resistenzen. Hieraus ergibt sich ein Bedarf für präklinische Modelle zur genaueren Untersuchung prädiktiver Biomarker für eine verbesserte personalisierte Medizin und zur Testung von Kombinationstherapien sowie neuartiger therapeutischer Ansätze, um bestehende Resistenzen zu brechen. Ein Drittel aller Lungen-Adenokarzinome weisen Mutationen im KRAS-Gen auf, von denen 39 % Transitionen von Glycin zu Cystein in Codon 12 (KRASG12C) darstellen. Obwohl KRAS in den vergangenen Jahrzehnten als "unbehandelbar" galt, haben sich KRASG12C-Inhibitoren nun den Weg in die klinische Standardbehandlung von Lungen-Adenokarzinomen gebahnt. Jedoch sind die Ansprech- und Überlebensraten von Patienten, die mit KRASG12C-Inhibitoren behandelt werden, ernüchternd. Daher wurden in dieser Arbeit 3D KRASG12C-Biomarker in vitro Modelle basierend auf dezellularisierten Schweinedünndarm (SISmuc) unter Verwendung kommerzieller und PDX-abgeleiteter Zelllinien aufgebaut und hinsichtlich der epithelial-mesenchymalen Transition (EMT), Stammzell-Eigenschaften, Proliferation, Invasion und c MYC-Expression sowie der Sensitivität gegenüber KRASG12C-Inhibitoren charakterisiert. Der in der Literatur für in vivo Modelle beschriebene Phänotyp von Lungentumoren mit KRAS-Mutationen und c-MYC-Überexpression in Bezug auf Invasion und Proliferation war in den SISmuc-Modellen reproduzierbar. Während in den 3D Modellen erhöhte Resistenz gegenüber zielgerichteten Therapien im Vergleich zu 2D beobachtet wurde, konnte eine verringerte Viabilität nach der Behandlung mit Kombinationstherapien ausschließlich in den 3D Modellen beobachtet werden. Im Test-System zeigten sich weder EMT noch die c-MYC-Expression als direkt prädiktiv für die Sensitivität gegenüber KRASG12C-Inhibitoren. Bei der Prüfung von verschiedenen Kombinationstherapien, wurde eine sensibilisierende Wirkung des Aurora-Kinase A (AURKA)-Inhibitors Alisertib für den KRASG12C-Inhibitor ARS-1620 beobachtet, welche direkt mit dem Grad der c-MYC-Expression in den entsprechenden 3D-Modellen korrelierte. Hierdurch konnte die Eignung von SISmuc Tumor Modellen als in vitro Test-System zur Patienten-Stratifizierung gezeigt werden, welches die Möglichkeit einer Reduktion von Tierversuchen birgt. Neben zielgerichteten Therapien ist die Behandlung von NSCLC mit onkolytischen Viren (OVs) ein vielversprechender Ansatz. Es mangelt jedoch an in vitro Modellen, um neue OVs in einer präklinischen Umgebung zu testen. Hierfür wurden 3D-NSCLC-Modelle auf der Grundlage der SISmuc bezüglich ihrer Eignung zur Durchführung von Wirksamkeits- und Risikobewertungen von OVs untersucht. Dabei zeigte die Infektion von Kokulturen aus Tumorzellen und Fibroblasten auf der SISmuc mit bereitgestellten Viren, dass die abgeschwächte Version des OV im Gegensatz zu einem auf dem Wildtyp des Herpes Simplex Virus 1 (HSV-1) basierenden OV eine Spezifität für NSCLC-Zellen mit einem fortgeschritteneren und stark proliferativen Phänotyp aufwies, während Fibroblasten sich für eine Infektion nicht länger permissiv zeigten. Dieser Ansatz stellt unter Beweis, dass SISmuc-Tumormodelle sich als neues Test-System zur in vitro Prüfung von OVs eignen. Schließlich wurde ein Arbeitsablauf zur Validierung der Wirksamkeit von Krebstherapien in 3D-Tumor-Sphäroiden für die Übertragung auf eine automatisierte Plattform auf der Grundlage eines zweiarmigen Robotersystems entwickelt. In einem Proof-of-Concept-Prozess wurden H358-Sphäroide charakterisiert und mit dem KRASG12C-Inhibitor ARS-1620 behandelt. Eine zeit- und dosisabhängige Reduktion der Sphäroid-Fläche nach der Behandlung wurde zusammen mit einer Lebend/Tot-Färbung als einfach durchzuführender und kostengünstiger Assay für automatisierte Medikamententests definiert, welche in situ in einer automatisierten Umgebung durchgeführt werden können. KW - Krebs KW - Tissue Engineering KW - Tumor models KW - Cancer KW - Targeted therapies KW - Automation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310693 ER - TY - THES A1 - Wandtner, Bernhard T1 - Non-driving related tasks in highly automated driving - Effects of task characteristics and drivers' self-regulation on take-over performance T1 - Fahrfremde Tätigkeiten beim hochautomatisierten Fahren - Einfluss des Aufgabentyps und der Selbstregulation auf die Übernahmeleistung N2 - The rise of automated driving will fundamentally change our mobility in the near future. This thesis specifically considers the stage of so called highly automated driving (Level 3, SAE International, 2014). At this level, a system carries out vehicle guidance in specific application areas, e.g. on highway roads. The driver can temporarily suspend from monitoring the driving task and might use the time by engaging in so called non-driving related tasks (NDR-tasks). However, the driver is still in charge to resume vehicle control when prompted by the system. This new role of the driver has to be critically examined from a human factors perspective. The main aim of this thesis was to systematically investigate the impact of different NDR-tasks on driver behavior and take-over performance. Wickens’ (2008) architecture of multiple resource theory was chosen as theoretical framework, with the building blocks of multiplicity (task interference due to resource overlap), mental workload (task demands), and aspects of executive control or self-regulation. Specific adaptations and extensions of the theory were discussed to account for the context of NDR-task interactions in highly automated driving. Overall four driving simulator studies were carried out to investigate the role of these theoretical components. Study 1 showed that drivers focused NDR-task engagement on sections of highly automated compared to manual driving. In addition, drivers avoided task engagement prior to predictable take-over situations. These results indicate that self-regulatory behavior, as reported for manual driving, also takes place in the context of highly automated driving. Study 2 specifically addressed the impact of NDR-tasks’ stimulus and response modalities on take-over performance. Results showed that particularly visual-manual tasks with high motoric load (including the need to get rid of a handheld object) had detrimental effects. However, drivers seemed to be aware of task specific distraction in take-over situations and strictly canceled visual-manual tasks compared to a low impairing auditory-vocal task. Study 3 revealed that also the mental demand of NDR-tasks should be considered for drivers’ take-over performance. Finally, different human-machine-interfaces were developed and evaluated in Simulator Study 4. Concepts including an explicit pre-alert (“notification”) clearly supported drivers’ self-regulation and achieved high usability and acceptance ratings. Overall, this thesis indicates that the architecture of multiple resource theory provides a useful framework for research in this field. Practical implications arise regarding the potential legal regulation of NDR-tasks as well as the design of elaborated human-machine-interfaces. N2 - In den nächsten Jahren wird die Fahrzeugautomatisierung stufenweise immer weiter zunehmen. Im Fokus dieser Arbeit steht das Hochautomatisierte Fahren (HAF), bei dem ein System in definierten Anwendungsbereichen, z.B. auf Autobahnen, die Fahraufgabe vollständig übernehmen kann (Level 3; SAE International, 2014). Der Fahrer muss das Verkehrsgeschehen nicht mehr überwachen, jedoch bereit sein, nach Aufforderung durch das System die Fahraufgabe wieder zu übernehmen. Bisherige Forschung legt nahe, dass Fahrer die freigewordene Zeit oftmals zur Beschäftigung mit sog. fahrfremden Tätigkeiten (FFTs) nutzen werden. Die vorliegende Arbeit beschäftigt sich mit den Herausforderungen, die diese neue Rolle des Fahrers mit sich bringt. Der Fokus liegt auf dem Einfluss unterschiedlicher FFTs auf die Übernahmeleistung und der Frage, inwieweit Fahrer den Umgang mit FFTs an die situativen Bedingungen anpassen. Die Theorie der multiplen Ressourcen (Wickens, 2008) wurde dabei als Rahmenmodell gewählt und für den spezifischen Anwendungsfall von HAF-Systemen ausgelegt. In vier Fahrsimulatorstudien wurden die unterschiedlichen Komponenten der Theorie untersucht. Studie 1 beschäftigte sich mit dem Aspekt der Ressourcenallokation (Selbstregulation). Die Ergebnisse zeigten, dass Fahrer die Beschäftigung mit einer prototypischen FFT an die Verfügbarkeit des HAF-Systems anpassten. Die Tätigkeit wurde bevorzugt im HAF und nicht im manuellen Fahrbetrieb durchgeführt und vor Übernahmesituationen wurden weniger Aufgaben neu begonnen. Studie 2 betrachtete den Aspekt der Interferenz zwischen FFT und Fahraufgabe. Die Modalitäten einer FFT wurden dazu systematisch variiert. Dabei zeigte sich, dass insbesondere visuell-manuelle Tätigkeiten mit hoher motorischer Beanspruchung (z.B. ein in der Hand gehaltenes Tablet) die Übernahme erschwerten. Fahrer schienen sich der Ablenkung bewusst zu sein und brachen diese Art von Aufgaben bei der Übernahme eher ab. Studie 3 ergab Hinweise, dass neben den Aufgabenmodalitäten auch kognitive Beanspruchung die Übernahmeleistung beeinträchtigen kann. Studie 4 beschäftigte sich mit der Mensch-Maschine-Schnittstelle (HMI) für HAF-Systeme. Die Ergebnisse ergaben, dass eine explizite Vorankündigung von Übernahmesituationen die Selbstregulation des Fahrers unterstützen kann. Die Arbeit zeigt die Eignung der multiplen Ressourcentheorie als Rahmenmodell für Forschung im Bereich HAF. Praktische Implikationen ergeben sich für mögliche gesetzliche Regelungen über erlaubte Tätigkeiten beim HAF, genauso wie konkrete HMI-Gestaltungsempfehlungen. KW - Autonomes Fahrzeug KW - Fahrerverhalten KW - automated driving KW - human-automation interaction KW - driver behavior KW - driver distraction KW - Automatisiertes Fahren KW - Mensch-Maschine-Interaktion KW - Fahrerablenkung KW - Automation KW - Verkehrspsychologie KW - Mensch-Maschine-Kommunikation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173956 ER - TY - THES A1 - Züfle, Marwin Otto T1 - Proactive Critical Event Prediction based on Monitoring Data with Focus on Technical Systems T1 - Proaktive Vorhersage kritischer Ereignisse auf der Grundlage von Beobachtungsdaten mit Schwerpunkt auf technischen Systemen N2 - The importance of proactive and timely prediction of critical events is steadily increasing, whether in the manufacturing industry or in private life. In the past, machines in the manufacturing industry were often maintained based on a regular schedule or threshold violations, which is no longer competitive as it causes unnecessary costs and downtime. In contrast, the predictions of critical events in everyday life are often much more concealed and hardly noticeable to the private individual, unless the critical event occurs. For instance, our electricity provider has to ensure that we, as end users, are always supplied with sufficient electricity, or our favorite streaming service has to guarantee that we can watch our favorite series without interruptions. For this purpose, they have to constantly analyze what the current situation is, how it will develop in the near future, and how they have to react in order to cope with future conditions without causing power outages or video stalling. In order to analyze the performance of a system, monitoring mechanisms are often integrated to observe characteristics that describe the workload and the state of the system and its environment. Reactive systems typically employ thresholds, utility functions, or models to determine the current state of the system. However, such reactive systems cannot proactively estimate future events, but only as they occur. In the case of critical events, reactive determination of the current system state is futile, whereas a proactive system could have predicted this event in advance and enabled timely countermeasures. To achieve proactivity, the system requires estimates of future system states. Given the gap between design time and runtime, it is typically not possible to use expert knowledge to a priori model all situations a system might encounter at runtime. Therefore, prediction methods must be integrated into the system. Depending on the available monitoring data and the complexity of the prediction task, either time series forecasting in combination with thresholding or more sophisticated machine and deep learning models have to be trained. Although numerous forecasting methods have been proposed in the literature, these methods have their advantages and disadvantages depending on the characteristics of the time series under consideration. Therefore, expert knowledge is required to decide which forecasting method to choose. However, since the time series observed at runtime cannot be known at design time, such expert knowledge cannot be implemented in the system. In addition to selecting an appropriate forecasting method, several time series preprocessing steps are required to achieve satisfactory forecasting accuracy. In the literature, this preprocessing is often done manually, which is not practical for autonomous computing systems, such as Self-Aware Computing Systems. Several approaches have also been presented in the literature for predicting critical events based on multivariate monitoring data using machine and deep learning. However, these approaches are typically highly domain-specific, such as financial failures, bearing failures, or product failures. Therefore, they require in-depth expert knowledge. For this reason, these approaches cannot be fully automated and are not transferable to other use cases. Thus, the literature lacks generalizable end-to-end workflows for modeling, detecting, and predicting failures that require only little expert knowledge. To overcome these shortcomings, this thesis presents a system model for meta-self-aware prediction of critical events based on the LRA-M loop of Self-Aware Computing Systems. Building upon this system model, this thesis provides six further contributions to critical event prediction. While the first two contributions address critical event prediction based on univariate data via time series forecasting, the three subsequent contributions address critical event prediction for multivariate monitoring data using machine and deep learning algorithms. Finally, the last contribution addresses the update procedure of the system model. Specifically, the seven main contributions of this thesis can be summarized as follows: First, we present a system model for meta self-aware prediction of critical events. To handle both univariate and multivariate monitoring data, it offers univariate time series forecasting for use cases where a single observed variable is representative of the state of the system, and machine learning algorithms combined with various preprocessing techniques for use cases where a large number of variables are observed to characterize the system’s state. However, the two different modeling alternatives are not disjoint, as univariate time series forecasts can also be included to estimate future monitoring data as additional input to the machine learning models. Finally, a feedback loop is incorporated to monitor the achieved prediction quality and trigger model updates. We propose a novel hybrid time series forecasting method for univariate, seasonal time series, called Telescope. To this end, Telescope automatically preprocesses the time series, performs a kind of divide-and-conquer technique to split the time series into multiple components, and derives additional categorical information. It then forecasts the components and categorical information separately using a specific state-of-the-art method for each component. Finally, Telescope recombines the individual predictions. As Telescope performs both preprocessing and forecasting automatically, it represents a complete end-to-end approach to univariate seasonal time series forecasting. Experimental results show that Telescope achieves enhanced forecast accuracy, more reliable forecasts, and a substantial speedup. Furthermore, we apply Telescope to the scenario of predicting critical events for virtual machine auto-scaling. Here, results show that Telescope considerably reduces the average response time and significantly reduces the number of service level objective violations. For the automatic selection of a suitable forecasting method, we introduce two frameworks for recommending forecasting methods. The first framework extracts various time series characteristics to learn the relationship between them and forecast accuracy. In contrast, the other framework divides the historical observations into internal training and validation parts to estimate the most appropriate forecasting method. Moreover, this framework also includes time series preprocessing steps. Comparisons between the proposed forecasting method recommendation frameworks and the individual state-of-the-art forecasting methods and the state-of-the-art forecasting method recommendation approach show that the proposed frameworks considerably improve the forecast accuracy. With regard to multivariate monitoring data, we first present an end-to-end workflow to detect critical events in technical systems in the form of anomalous machine states. The end-to-end design includes raw data processing, phase segmentation, data resampling, feature extraction, and machine tool anomaly detection. In addition, the workflow does not rely on profound domain knowledge or specific monitoring variables, but merely assumes standard machine monitoring data. We evaluate the end-to-end workflow using data from a real CNC machine. The results indicate that conventional frequency analysis does not detect the critical machine conditions well, while our workflow detects the critical events very well with an F1-score of almost 91%. To predict critical events rather than merely detecting them, we compare different modeling alternatives for critical event prediction in the use case of time-to-failure prediction of hard disk drives. Given that failure records are typically significantly less frequent than instances representing the normal state, we employ different oversampling strategies. Next, we compare the prediction quality of binary class modeling with downscaled multi-class modeling. Furthermore, we integrate univariate time series forecasting into the feature generation process to estimate future monitoring data. Finally, we model the time-to-failure using not only classification models but also regression models. The results suggest that multi-class modeling provides the overall best prediction quality with respect to practical requirements. In addition, we prove that forecasting the features of the prediction model significantly improves the critical event prediction quality. We propose an end-to-end workflow for predicting critical events of industrial machines. Again, this approach does not rely on expert knowledge except for the definition of monitoring data, and therefore represents a generalizable workflow for predicting critical events of industrial machines. The workflow includes feature extraction, feature handling, target class mapping, and model learning with integrated hyperparameter tuning via a grid-search technique. Drawing on the result of the previous contribution, the workflow models the time-to-failure prediction in terms of multiple classes, where we compare different labeling strategies for multi-class classification. The evaluation using real-world production data of an industrial press demonstrates that the workflow is capable of predicting six different time-to-failure windows with a macro F1-score of 90%. When scaling the time-to-failure classes down to a binary prediction of critical events, the F1-score increases to above 98%. Finally, we present four update triggers to assess when critical event prediction models should be re-trained during on-line application. Such re-training is required, for instance, due to concept drift. The update triggers introduced in this thesis take into account the elapsed time since the last update, the prediction quality achieved on the current test data, and the prediction quality achieved on the preceding test data. We compare the different update strategies with each other and with the static baseline model. The results demonstrate the necessity of model updates during on-line application and suggest that the update triggers that consider both the prediction quality of the current and preceding test data achieve the best trade-off between prediction quality and number of updates required. We are convinced that the contributions of this thesis constitute significant impulses for the academic research community as well as for practitioners. First of all, to the best of our knowledge, we are the first to propose a fully automated, end-to-end, hybrid, component-based forecasting method for seasonal time series that also includes time series preprocessing. Due to the combination of reliably high forecast accuracy and reliably low time-to-result, it offers many new opportunities in applications requiring accurate forecasts within a fixed time period in order to take timely countermeasures. In addition, the promising results of the forecasting method recommendation systems provide new opportunities to enhance forecasting performance for all types of time series, not just seasonal ones. Furthermore, we are the first to expose the deficiencies of the prior state-of-the-art forecasting method recommendation system. Concerning the contributions to critical event prediction based on multivariate monitoring data, we have already collaborated closely with industrial partners, which supports the practical relevance of the contributions of this thesis. The automated end-to-end design of the proposed workflows that do not demand profound domain or expert knowledge represents a milestone in bridging the gap between academic theory and industrial application. Finally, the workflow for predicting critical events in industrial machines is currently being operationalized in a real production system, underscoring the practical impact of this thesis. N2 - Die Bedeutung einer proaktiven und rechtzeitigen Vorhersage von kritischen Ereignissen nimmt immer weiter zu, sei es in der Fertigungsindustrie oder im Privatleben. In der Vergangenheit wurden Maschinen in der Fertigungsindustrie oft auf der Grundlage eines regelmäßigen Zeitplans oder aufgrund von Grenzwertverletzungen gewartet, was heutzutage nicht mehr wettbewerbsfähig ist, da es unnötige Kosten und Ausfallzeiten verursacht. Im Gegensatz dazu sind die Vorhersagen von kritischen Ereignissen im Alltag oft wesentlich versteckter und für die Privatperson kaum spürbar, es sei denn das kritische Ereignis tritt ein. So muss zum Beispiel unser Stromanbieter dafür sorgen, dass wir als Endverbraucher immer ausreichend mit Strom versorgt werden, oder unser Streaming-Dienst muss garantieren, dass wir unsere Lieblingsserie jederzeit ohne Unterbrechungen anschauen können. Hierzu müssen diese ständig analysieren wie der aktuelle Zustand ist, wie er sich in naher Zukunft entwickeln wird und wie sie reagieren müssen, um die zukünftigen Bedingungen zu bewältigen, ohne dass es zu Stromausfällen oder Videoabbrüchen kommt. Zur Analyse der Leistung eines Systems werden häufig Überwachungsmechanismen integriert, um Merkmale zu beobachten, die die Arbeitslast und den Zustand des Systems und seiner Umgebung abbilden. Reaktive Systeme verwenden typischerweise Schwellenwerte, Nutzenfunktionen oder Modelle, um den aktuellen Zustand des Systems zu bestimmen. Allerdings können solche reaktiven Systeme zukünftige Ereignisse nicht proaktiv abschätzen, sondern lediglich sobald diese eintreten. Bei kritischen Ereignissen ist die reaktive Bestimmung des aktuellen Systemzustands jedoch zwecklos, während ein proaktives System dieses Ereignis im Voraus hätte vorhersagen und rechtzeitig Gegenmaßnahmen einleiten können. Um Proaktivität zu erreichen, benötigt das System Abschätzungen über zukünftige Systemzustände. Angesichts der Kluft zwischen Entwurfszeit und Laufzeit ist es typischerweise nicht möglich Expertenwissen zu verwenden, um alle Situationen zu modellieren, auf die ein System zur Laufzeit stoßen könnte. Daher müssen Vorhersagemethoden in das System integriert werden. Abhängig von den verfügbaren Überwachungsdaten und der Komplexität der Vorhersageaufgabe müssen entweder Zeitreihenprognosen in Kombination mit Schwellenwerten oder ausgefeiltere Modelle des „Machine Learning“ und „Deep Learning“ trainiert werden. Obwohl in der Literatur schon zahlreiche Zeitreihenprognosemethoden vorgeschlagen wurden, haben alle diese Methoden in Abhängigkeit der Eigenschaften der betrachteten Zeitreihen ihre Vor- und Nachteile. Daher ist Expertenwissen erforderlich, um zu entscheiden, welche Zeitreihenprognosemethode gewählt werden sollte. Da jedoch die zur Laufzeit beobachteten Zeitreihen zur Entwurfszeit nicht bekannt sein können, lässt sich ein solches Expertenwissen nicht im System integrieren. Zusätzlich zur Auswahl einer geeigneten Zeitreihenprognosemethode sind mehrere Zeitreihenvorverarbeitungsschritte erforderlich, um eine zufriedenstellende Prognosegenauigkeit zu erreichen. In der Literatur wird diese Vorverarbeitung oft manuell durchgeführt, was für autonome Computersysteme, wie z. B. „Self-Aware Computing Systems“, nicht praktikabel ist. Hinsichtlich der Vorhersage kritischer Ereignisse auf der Grundlage multivariater Überwachungsdaten wurden in der Literatur auch bereits mehrere Ansätze unter Verwendung von „Machine Learning“ und „Deep Learning“ vorgestellt. Diese Ansätze sind jedoch typischerweise sehr domänenspezifisch, wie z. B. für finanzielle Zusammenbrüche, Lagerschäden oder Produktfehler. Aus diesem Grund erfordern sie umfassendes Expertenwissen. Durch den spezifischen Zuschnitt auf die jeweilige Domäne können diese Ansätze nicht vollständig automatisiert werden und sind nicht auf andere Anwendungsfälle übertragbar. Somit fehlt es in der Literatur an verallgemeinerbaren Ende-zu-Ende Prozessen zur Modellierung, Erkennung und Vorhersage von Ausfällen, die lediglich wenig Expertenwissen erfordern. Um diese Unzulänglichkeiten zu überwinden, wird in dieser Arbeit ein Systemmodell zur meta-selbstbewussten Vorhersage kritischer Ereignisse vorgestellt, das auf der LRA-M-Schleife von „Self-Aware Computing Systems“ basiert. Aufbauend auf diesem Systemmodell liefert diese Arbeit sechs weitere Beiträge zur Vorhersage kritischer Ereignisse. Während sich die ersten beiden Beiträge mit der Vorhersage kritischer Ereignisse auf der Basis univariater Daten mittels Zeitreihenprognose befassen, adressieren die drei folgenden Beiträge die Vorhersage kritischer Ereignisse für multivariate Überwachungsdaten unter Verwendung von „Machine Learning“ und „Deep Learning“ Algorithmen. Der letzte Beitrag schließlich behandelt das Aktualisierungsverfahren des Systemmodells. Im Einzelnen lassen sich die sieben Hauptbeiträge dieser Arbeit wie folgt zusammenfassen: Zunächst stellen wir ein Systemmodell für die meta-selbstbewusste Vorhersage von kritischen Ereignissen vor. Um sowohl univariate als auch multivariate Überwachungsdaten verarbeiten zu können, bietet es univariate Zeitreihenprognosen für Anwendungsfälle, in denen eine einzelne Beobachtungsgröße repräsentativ für den Zustand des Systems ist, sowie „Machine Learning“ und „Deep Learning“ Algorithmen in Kombination mit verschiedenen Vorverarbeitungstechniken für Anwendungsfälle, in denen eine große Anzahl von Variablen beobachtet wird, um den Zustand des Systems zu charakterisieren. Die beiden unterschiedlichen Modellierungsalternativen sind jedoch nicht disjunkt, da auch univariate Zeitreihenprognosen einbezogen werden können, um zukünftige Überwachungsdaten als zusätzliche Eingabe für die „Machine Learning“ und „Deep Learning“ Modelle zu schätzen. Schließlich ist eine Rückkopplungsschleife eingebaut, die die erreichte Vorhersagequalität überwacht und gegebenenfalls Modellaktualisierungen auslöst. Wir präsentieren eine neuartige, hybride Zeitreihenvorhersagemethode für univariate, saisonale Zeitreihen, die wir Telescope nennen. Telescope verarbeitet die Zeitreihe automatisch vor, führt eine Art „Divide-and-Conquer“ Technik durch, welche die Zeitreihe in mehrere Komponenten unterteilt, und leitet zusätzliche kategoriale Informationen ab. Anschließend prognostiziert es die Komponenten und kategorialen Informationen getrennt voneinander mit einer spezifischen Methode für jede Komponente. Abschließend setzt Telescope die einzelnen Vorhersagen wieder zusammen. Da Telescope alle Vorverarbeitungsschritte und Vorhersagen automatisch durchführt, stellt es einen vollständigen Ende-zu-Ende Ansatz für univariate, saisonale Zeitreihenvorhersagen dar. Experimentelle Ergebnisse zeigen, dass Telescope eine verbesserte Vorhersagegenauigkeit, zuverlässigere Vorhersagen und eine erhebliche Beschleunigung erreicht. Darüber hinaus wenden wir Telescope für die Vorhersage kritischer Ereignisse bei der automatischen Skalierung von virtuellen Maschinen an. Die Ergebnisse belegen, dass Telescope die durchschnittliche Antwortzeit erheblich reduziert und die Anzahl der Verletzungen der Service Level Zielvorgaben signifikant verringert. Für die automatische Auswahl einer geeigneten Zeitreihenprognosemethode führen wir zwei Empfehlungssysteme ein. Das erste System extrahiert verschiedene Zeitreihencharakteristika, um die Beziehung zwischen ihnen und der Prognosegenauigkeit zu erlernen. Im Gegensatz dazu unterteilt das zweite System die historischen Beobachtungen in interne Trainings- und Validierungsteile, um die am besten geeignete Zeitreihenprognosemethode zu schätzen. Außerdem beinhaltet letzteres System auch Zeitreihenvorverarbeitungsschritte. Vergleiche zwischen den vorgeschlagenen Empfehlungssystemen für Zeitreihenprognosemethoden und den einzelnen Prognosemethoden sowie dem Ansatz zur Empfehlung von Zeitreihenprognosemethoden nach dem Stand der Technik ergeben, dass die vorgeschlagenen Systeme die Prognosegenauigkeit erheblich verbessern. Im Hinblick auf multivariate Überwachungsdaten stellen wir zunächst einen Ende-zu-Ende Prozess vor, mit dem kritische Ereignisse in technischen Systemen in Form von anomalen Maschinenzuständen erkannt werden können. Der Ende-zu-Ende Entwurf umfasst die Rohdatenverarbeitung, die Phasensegmentierung, das Datenresampling, die Merkmalsextraktion und die Maschinenanomalieerkennung. Darüber hinaus stützt sich der Prozess explizit nicht auf tiefgreifendes Domänenwissen oder spezifische Überwachungsgrößen, sondern setzt lediglich gängige Maschinenüberwachungsdaten voraus. Wir evaluieren den Ende-zu-Ende Prozess anhand von Daten einer realen CNC-Maschine. Die Ergebnisse zeigen, dass die konventionelle Frequenzanalyse die kritischen Maschinenzustände nicht gut erkennt, während unser Prozess die kritischen Ereignisse mit einem F1-Wert von fast 91% sehr gut identifiziert. Um kritische Ereignisse vorherzusagen, anstatt sie nur reaktiv zu erkennen, vergleichen wir verschiedene Modellierungsalternativen für die Vorhersage kritischer Ereignisse im Anwendungsfall der Vorhersage der Zeit bis zum nächsten Fehler von Festplattenlaufwerken. Da Fehlerdatensätze typischerweise wesentlich seltener sind als Instanzen, die den Normalzustand repräsentieren, setzen wir verschiedene Strategien zum Erzeugen künstlicher Fehlerinstanzen ein. Im nächsten Schritt vergleichen wir die Vorhersagequalität der binären Klassenmodellierung mit der herunterskalierten Mehrklassenmodellierung. Des Weiteren integrieren wir die univariate Zeitreihenprognose in den Merkmalsgenerierungsprozess, um so die zukünftigen Überwachungsdaten zu schätzen. Schließlich modellieren wir die Zeit bis zum nächsten Fehler nicht nur mithilfe von Klassifikationsmodellen, sondern auch mit Regressionsmodellen. Die Ergebnisse legen nahe, dass die Mehrklassenmodellierung die insgesamt beste Vorhersagequalität hinsichtlich praktischer Anforderungen liefert. Außerdem belegen wir, dass die Prognose der Merkmale des Vorhersagemodells mittels univariater Zeitreihenprognose die Qualität der Vorhersage kritischer Ereignisse signifikant verbessert. Wir stellen einen Ende-zu-Ende Prozess für die Vorhersage kritischer Ereignisse von Industriemaschinen vor. Auch dieser Ansatz verlässt sich nicht auf Expertenwissen, mit Ausnahme der Definition von Überwachungsdaten, und stellt daher einen verallgemeinerbaren Prozess für die Vorhersage kritischer Ereignisse von Industriemaschinen dar. Der Prozess umfasst Merkmalsextraktion, Merkmalsverarbeitung, Zielklassenzuordnung und Modelllernen mit integrierter Hyperparameter-Abstimmung mittels einer Gittersuchtechnik. Ausgehend von den Ergebnissen des vorherigen Beitrags modelliert der Prozess die Vorhersage der Zeit bis zum nächsten Fehler in Form mehrerer Klassen, wobei wir verschiedene Beschriftungsstrategien für die Mehrklassenklassifizierung vergleichen. Die Evaluierung anhand realer Produktionsdaten einer großen Industriepresse demonstriert, dass der Prozess in der Lage ist, sechs verschiedene Zeitfenster für bevorstehende Fehler mit einem Makro F1-Wert von 90% vorherzusagen. Wenn man die Klassen der Zeit bis zum nächsten Fehler auf eine binäre Vorhersage von kritischen Ereignissen herunterskaliert, steigt der F1-Wert sogar auf über 98%. Schließlich stellen wir vier Aktualisierungsauslöser vor, um zu bestimmen, wann Modelle zur Vorhersage kritischer Ereignisse während der Online-Anwendung neu trainiert werden sollten. Ein solches Neutraining ist bspw. aufgrund von Konzeptdrift erforderlich. Die in dieser Arbeit vorgestellten Aktualisierungsauslöser berücksichtigen die Zeit, die seit der letzten Aktualisierung verstrichen ist, die auf den aktuellen Testdaten erreichte Vorhersagequalität und die auf den vorangegangenen Testdaten erreichte Vorhersagequalität. Wir vergleichen die verschiedenen Aktualisierungsstrategien miteinander und mit dem statischen Ausgangsmodell. Die Ergebnisse veranschaulichen die Notwendigkeit von Modellaktualisierungen während der Online-Anwendung und legen nahe, dass die Aktualisierungsauslöser, die sowohl die Vorhersagequalität der aktuellen als auch der vorangegangenen Testdaten berücksichtigen, den besten Kompromiss zwischen Vorhersagequalität und Anzahl der erforderlichen Aktualisierungen erzielen. Wir sind der festen Überzeugung, dass die Beiträge dieser Arbeit sowohl für die akademische Forschungsgemeinschaft als auch für die praktische Anwendung wichtige Impulse darstellen. Zuallererst sind wir unseres Wissens nach die ersten, die eine vollautomatische, hybride, komponentenbasierte, Ende-zu-Ende Prognosemethode für saisonale Zeitreihen vorschlagen, die auch die Zeitreihenvorverarbeitung beinhaltet. Durch die Verbindung einer zuverlässig hohen Vorhersagegenauigkeit mit einer zuverlässig niedrigen Zeit bis zum Ergebnis eröffnet diese viele neue Möglichkeiten für Anwendungen, die genaue Vorhersagen innerhalb eines festen Zeitraums erfordern, um rechtzeitig Gegenmaßnahmen ergreifen zu können. Darüber hinaus bieten die vielversprechenden Ergebnisse der Empfehlungssysteme für Zeitreihenprognosemethoden neue Ansätze zur Verbesserung der Vorhersageleistung für alle Arten von Zeitreihen, nicht nur für saisonale Zeitreihen. Ferner sind wir die ersten, die die Schwachstellen des bisherigen Stands der Technik bei der Empfehlung von Zeitreihenprognosemethoden aufgedeckt haben. Hinsichtlich der Beiträge zur Vorhersage kritischer Ereignisse mittels multivariater Überwachungsdaten haben wir bereits eng mit Industriepartnern zusammengearbeitet,wodurch die hohe praktische Relevanz der Beiträge dieser Arbeit verdeutlicht wird. Der automatisierte Ende-zu-Ende Entwurf der vorgeschlagenen Prozesse, die kein tiefes Domänen- oder Expertenwissen erfordern, stellt einen Meilenstein in der Überbrückung der Kluft zwischen akademischer Theorie und industrieller Anwendung dar. Diese Tatsache wird insbesondere dadurch untermauert, dass der Prozess zur Vorhersage kritischer Ereignisse in Industriemaschinen derzeit bereits in einem realen Produktionssystem operationalisiert wird. KW - Prognose KW - Automation KW - Zeitreihe KW - Forecasting KW - Zeitreihenvorhersage KW - Failure Prediction KW - Fehlervorhersage KW - End-to-End Automation KW - Ende-zu-Ende Automatisierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255757 ER -