TY - THES A1 - Babu, Dinesh Kumar T1 - Efficient Data Fusion Approaches for Remote Sensing Time Series Generation T1 - Effiziente Datenfusionsansätze für die Generierung von Fernerkundungszeitreihen N2 - Fernerkundungszeitreihen beschreiben die Erfassung von zeitlich gleichmäßig verteilten Fernerkundungsdaten in einem festgelegten Zeitraum entweder global oder für ein vordefiniertes Gebiet. Für die Überwachung der Landwirtschaft, die Erkennung von Veränderungen der Phänologie oder für das Umwelt-Monitoring werden nahezu tägliche Daten mit hoher räumlicher Auflösung benötigt. Bei vielen verschiedenen fernerkundlichen Anwendungen hängt die Genauigkeit von der dichte und der Verlässlichkeit der fernerkundlichen Datenreihe ab. Die verschiedenen Fernerkundungssatellitenkonstellationen sind immer noch nicht in der Lage, fast täglich oder täglich Bilder mit hoher räumlicher Auflösung zu liefern, um die Bedürfnisse der oben erwähnten Fernerkundungsanwendungen zu erfüllen. Einschränkungen bei den Sensoren, hohe Entwicklungskosten, hohe Betriebskosten der Satelliten und das Vorhandensein von Wolken, die die Sicht auf das Beobachtungsgebiet blockieren, sind einige der Gründe, die es sehr schwierig machen, fast tägliche oder tägliche optische Fernerkundungsdaten mit hoher räumlicher Auflösung zu erhalten. Mit Entwicklungen bei den optischen Sensorsystemen und gut geplanten Fernerkundungssatellitenkonstellationen kann dieser Zustand verbessert werden, doch ist dies mit Kosten verbunden. Selbst dann wird das Problem nicht vollständig gelöst sein, so dass der wachsende Bedarf an zeitlich und räumlich hochauflösenden Daten nicht vollständig gedeckt werden kann. Da der Datenerfassungsprozess sich auf Satelliten stützt, die physische Systeme sind, können diese aus verschiedenen Gründen unvorhersehbar ausfallen und einen vollständigen Verlust der Beobachtung für einen bestimmten Zeitraum verursachen, wodurch eine Lücke in der Zeitreihe entsteht. Um den langfristigen Trend der phänologischen Veränderungen aufgrund der sich schnell ändernden Umweltbedingungen zu beobachten, sind die Fernerkundungsdaten aus der gegenwärtig nicht ausreichend. Hierzu werden auch Daten aus der Vergangenheit benötigt. Eine bessere Alternativlösung für dieses Problem kann die Erstellung von Fernerkundungszeitreihen durch die Fusion von Daten mehrerer Fernerkundungssatelliten mit unterschiedlichen räumlichen und zeitlichen Auflösungen sein. Dieser Ansatz soll effektiv und effizient sein. Bei dieser Methode kann ein zeitlich und räumlich hoch aufgelöstes Bild von einem Satelliten, wie Sentinel-2 mit einem zeitlich und räumlich niedrig aufgelösten Bild von einem Satelliten, wie Sentinel-3 fusioniert werden, um synthetische Daten mit hoher zeitlicher und räumlicher Auflösung zu erzeugen. Die Erzeugung von Fernerkundungszeitreihen durch Datenfusionsmethoden kann sowohl auf die gegenwärtig erfassten Satellitenbilder als auch auf die in der Vergangenheit von den Satelliten aufgenommenen Bilder angewandt werden. Dies wird die dringend benötigten zeitlich und räumlich hochauflösenden Bilder für Fernerkundungsanwendungen liefern. Dieser vereinfachte Ansatz ist kosteneffektiv und bietet den Forschern die Möglichkeit, aus der begrenzten Datenquelle, die ihnen zur Verfügung steht, die für ihre Anwendung benötigten Daten selbst zu generieren. Ein effizienter Datenfusionsansatz in Kombination mit einer gut geplanten Satellitenkonstellation kann ein Lösungsansatz sein, um eine nahezu tägliche Zeitreihen von Fernerkundungsdaten lückenlos gewährleistet. Ziel dieser Forschungsarbeit ist die Entwicklung eines effizienten Datenfusionsansatzes, um dichte Fernerkundungszeitreihen zu erhalten. N2 - Remote sensing time series is the collection or acquisition of remote sensing data in a fixed equally spaced time period over a particular area or for the whole world. Near daily high spatial resolution data is very much needed for remote sensing applications such as agriculture monitoring, phenology change detection, environmental monitoring and so on. Remote sensing applications can produce better and accurate results if they are provided with dense and accurate time series of data. The current remote sensing satellite architecture is still not capable of providing near daily or daily high spatial resolution images to fulfill the needs of the above mentioned remote sensing applications. Limitations in sensors, high development, operational costs of satellites and presence of clouds blocking the area of observation are some of the reasons that makes near daily or daily high spatial resolution optical remote sensing data highly challenging to achieve. With developments in the optical sensor systems and well planned remote sensing satellite constellations, this condition can be improved but it comes at a cost. Even then the issue will not be completely resolved and thus the growing need for high temporal and high spatial resolution data cannot be fulfilled entirely. Because the data collection process relies on satellites which are physical system, these can fail unpredictably due to various reasons and cause a complete loss of observation for a given period of time making a gap in the time series. Moreover, to observe the long term trend in phenology change due to rapidly changing environmental conditions, the remote sensing data from the present is not just sufficient, the data from the past is also important. A better alternative solution for this issue can be the generation of remote sensing time series by fusing data from multiple remote sensing satellite which has different spatial and temporal resolutions. This approach will be effective and efficient. In this method a high temporal low spatial resolution image from a satellite such as Sentinel-2 can be fused with a low temporal and high spatial resolution image from a satellite such as the Sentinel-3 to generate a synthetic high temporal high spatial resolution data. Remote sensing time series generation by data fusion methods can be applied to the satellite images captured currently as well as the images captured by the satellites in the past. This will provide the much needed high temporal and high spatial resolution images for remote sensing applications. This approach with its simplistic nature is cost effective and provides the researchers the means to generate the data needed for their application on their own from the limited source of data available to them. An efficient data fusion approach in combination with a well planned satellite constellation can offer a solution which will ensure near daily time series of remote sensing data with out any gap. The aim of this research work is to develop an efficient data fusion approaches to achieve dense remote sensing time series. KW - Remote sensing KW - Spatial resolution KW - Time Series KW - Data Fusion KW - Optical remote sensing data KW - Temporal Resolution KW - High resolution data KW - moderate resolution data KW - low resolution data Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251808 ER - TY - THES A1 - Dhillon, Maninder Singh T1 - Potential of Remote Sensing in Modeling Long-Term Crop Yields T1 - Potenzial der Fernerkundung für die Modellierung Langfristiger Ernteerträge N2 - Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2 ), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase the R2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies. N2 - Die genaue Überwachung von Nutzpflanzen als Reaktion auf den Klimawandel auf regionaler oder feldbezogener Ebene spielt eine wichtige Rolle bei der Entwicklung von Agrarpolitiken, der Verbesserung der Ernährungssicherheit, der Erstellung von Prognosen und der Analyse von Trends im Welthandel. Es wird erwartet, dass sich der Klimawandel erheblich auf die Landwirtschaft auswirken wird, da sich Verschiebungen bei den Temperaturen, Niederschlagsmustern und extremen Wetterereignissen negativ auf die Ernteerträge, die Bodenfruchtbarkeit, die Wasserverfügbarkeit, die Artenvielfalt und die Anbaubedingungen auswirken werden. Die Fernerkundung (RS) kann in Kombination mit Wachstumsmodellen (CGM) wertvolle Informationen für die Ertragsbewertung liefern, indem sie die Entwicklung von Pflanzen überwacht, Veränderungen bei den Pflanzen erkennt und die Auswirkungen des Klimawandels auf die Ernteerträge bewertet. Ziel dieser Dissertation ist es, das Potenzial von RS-Daten für die Modellierung langfristiger Ernteerträge von Winterweizen (WW) und Ölraps (OSR) für den Freistaat Bayern (70.550 km2 ), Deutschland, zu untersuchen. Das erste Kapitel der Dissertation beschreibt die Gründe, die für die Bedeutung genauer Ernteertragsvorhersagen für die Nachhaltigkeit in der Landwirtschaft sprechen. Das zweite Kapitel befasst sich mit der Bewertung der Genauigkeit der synthetischen RS Daten durch die Fusion der NDVIs von zwei Daten mit hoher räumlicher Auflösung (hohes Paar) (Landsat (30 m, 16 Tage; L) und Sentinel-2 (10 m, 5-6 Tage; S) mit vier Daten mit geringer räumlicher Auflösung (niedriges Paar) (MOD13Q1 (250 m, 16 Tage), MCD43A4 (500 m, ein Tag), MOD09GQ (250 m, ein Tag) und MOD09Q1 (250 m, 8 Tage)) unter Verwendung des räumlich und zeitlich adaptiven Reflexionsfusionsmodells (STARFM), das Wolken- oder Schattenlücken in Regionen füllt, ohne räumliche Informationen zu verlieren. In diesem Kapitel wird festgestellt, dass sowohl L-MOD13Q1 (R2 = 0,62, RMSE = 0,11) als auch S-MOD13Q1 (R2 = 0,68, RMSE = 0,13) für die Überwachung der Landwirtschaft besser geeignet sind als die anderen fusionierten synthetischen Produkte. Im dritten Kapitel wird untersucht, inwieweit die (in Kapitel 2 gewonnenen) synthetischen raum-zeitlichen Datensätze geeignet sind, die Ernteerträge von WW und OSR auf regionaler Ebene genau zu kartieren und zu überwachen. Das Kapitel untersucht und diskutiert die optimalen räumlichen (10 m, 30 m oder 250 m),zeitlichen (8 oder 16 Tage) und CGMs (World Food Studies (WOFOST) und den semi-empirischen Ansatz der Lichtnutzungseffizienz (LUE)) für genaue Ertragsschätzungen beider Kulturarten. Im dritten Kapitel wird festgestellt, dass die Beobachtung von Produkten mit hoher zeitlicher Auflösung (8 Tage) sowohl des S-MOD13Q1 als auch des L-MOD13Q1 eine wichtige Rolle bei der genauen Messung des Ertrags von WW und OSR spielt. In diesem Kapitel wird untersucht, dass das einfache Modell der Lichtnutzungseffizienz (LUE) (R2 = 0,77 und relativer RMSE (RRMSE) = 8,17 %), das weniger Eingabeparameter zur Simulation des Ernteertrags benötigt, sehr genau, zuverlässig und präziser ist als das komplexe WOFOST-Modell (R2 = 0,66 und RRMSE = 11,35 %) mit höheren Eingabeparametern. In Kapitel vier wird der Zusammenhang zwischen der raum-zeitlichen Fusionsmodellierung mit STRAFM und der Ertragsvorhersage für WW und OSR mit dem LUE-Modell für Bayern von 2001 bis 2019 untersucht. Das Kapitel stellt den hohen positiven Korrelationskoeffizienten (R) = 0,81 und R = 0,77 zwischen dem jährlichen R2 der synthetischen Genauigkeit und der modellierten Ertragsgenauigkeit für WW bzw. OSR von 2001 bis 2019 fest. In diesem Kapitel werden die Auswirkungen der Klimavariablen auf die Ertragsvorhersagen analysiert, wobei ein Anstieg des R2 (0,79 (WW)/0,86 (OSR)) und eine Verringerung des RMSE (4,51/2,57 dt/ha) festgestellt werden, wenn der Klimaeffekt in das Modell einbezogen wird. Das fünfte Kapitel deutet darauf hin, dass die Kopplung des LUE-Modells mit dem Random-Forest-Modell (RF) den relativen mittleren quadratischen Fehler (RRMSE) von -8 % (WW) und -1,6 % (OSR) weiter reduzieren und das R2 um 14,3 % (sowohl für WW als auch für OSR) erhöhen kann, verglichen mit Ergebnissen, die nur auf LUE beruhen. Das gleiche Kapitel kommt zu dem Schluss, dass die satellitengestützte Pflanzenbiomasse, die Sonneneinstrahlung und die Temperatur die einflussreichsten Variablen bei der Ertragsvorhersage für beide Kulturarten sind. In Kapitel sechs wird versucht, sowohl die Vor- als auch die Nachteile der RS-Technologie zu erörtern, indem die Auswirkungen der unterschiedlichen Landnutzung auf die modellierte Biomasse von WW und OSR analysiert werden. In diesem Kapitel wird festgestellt, dass die modellierte Biomasse beider Kulturen durch die Landnutzungsvielfalt bis zu einem Radius von 450 (Shannon Diversity Index ~0,75) bzw. 1050 m (~0,75) positiv beeinflusst wird. In diesem Kapitel werden auch künftige Auswirkungen erörtert, indem festgestellt wird, dass die Einbeziehung einiger abhängiger Faktoren (wie die angewandten Bewirtschaftungsmethoden, die Bodengesundheit, die Schädlingsbekämpfung und die Bestäuber) die Beziehung zwischen den mit RS modellierten Ernteerträgen und der biologischen Vielfalt verbessern könnte. Im siebten Kapitel schließlich wird die Erprobung neuer Sensoren wie unbemannte Luftfahrzeuge, hyperspektrale Sensoren oder Sentinel-1 SAR in der RS erörtert, um genaue Ertragsvorhersagen für die Präzisionslandwirtschaft zu erreichen. Darüber hinaus wird in diesem Kapitel die Bedeutung der künstlichen Intelligenz (KI) oder des Deep Learning (DL) für die Erzielung einer höheren Genauigkeit der Ernteerträge hervorgehoben. KW - Satellite Remote Sensing KW - Crop YIelds KW - Ernteertrag KW - Datenfusion KW - Landwirtschaft / Nachhaltigkeit KW - Winterweizen KW - Data Fusion KW - Sustainable Agriculture KW - Crop Growth Models KW - Winter wheat Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322581 N1 - eine "revised edition" der Arbeit finden Sie hier: https://doi.org/10.25972/OPUS-33052 ER - TY - JOUR A1 - Gageik, Nils A1 - Reinthal, Eric A1 - Benz, Paul A1 - Montenegro, Sergio T1 - Complementary Vision based Data Fusion for Robust Positioning and Directed Flight of an Autonomous Quadrocopter N2 - The present paper describes an improved 4 DOF (x/y/z/yaw) vision based positioning solution for fully 6 DOF autonomous UAVs, optimised in terms of computation and development costs as well as robustness and performance. The positioning system combines Fourier transform-based image registration (Fourier Tracking) and differential optical flow computation to overcome the drawbacks of a single approach. The first method is capable of recognizing movement in four degree of freedom under variable lighting conditions, but suffers from low sample rate and high computational costs. Differential optical flow computation, on the other hand, enables a very high sample rate to gain control robustness. This method, however, is limited to translational movement only and performs poor in bad lighting conditions. A reliable positioning system for autonomous flights with free heading is obtained by fusing both techniques. Although the vision system can measure the variable altitude during flight, infrared and ultrasonic sensors are used for robustness. This work is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application and makes autonomous directed flight possible. KW - Autonomous UAV KW - Quadrocopter KW - Quadrotor KW - Vision Based KW - Positioning KW - Data Fusion KW - Directed Flight Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113621 ER -