TY - THES A1 - Brill, Martin Fritz T1 - Processing and plasticity within the dual olfactory pathway in the honeybee brain T1 - Verarbeitung und Plastizität in der dualen olfaktorischen Bahn im Gehirn der Honigbiene N2 - In their natural environment animals face complex and highly dynamic olfactory input. This requires fast and reliable processing of olfactory information, in vertebrates as well as invertebrates. Parallel processing has been shown to improve processing speed and power in other sensory systems like auditory or visual. In the olfactory system less is known about olfactory coding in general and parallel processing in particular. With its elaborated olfactory system and due to their specialized neuroanatomy, honeybees are well-suited model organism to study parallel olfactory processing. The honeybee possesses a unique neuronal architecture - a dual olfactory pathway. Two mirror-imaged output projection neuron (PN) pathways connect the first olfactory processing stage, the antennal lobe (analog to the vertebrates olfactory bulb, OB), with the second, the mushroom body (MB) known to be involved in orientation and learning and memory, and the lateral horn (LH). The medial antennal lobe-protocerebral tract (m-APT) first innervates the MB and thereafter the LH, while the other, the lateral-APT (l-APT) projects in opposite direction. The neuroanatomy and evolution of these pathways has been analyzed, yet little is known about its physiology. To analyze the function of the dual olfactory pathway a new established recording method was designed and is described in the first chapter of this thesis (multi-unit-recordings). This is now the first time where odor response from several PNs of both tracts is recorded simultaneously and with high temporal precision. In the second chapter the PN odor responses are analyzed. The major findings are: both tracts responded to all tested odors but with differing characteristics. Since recent studies describe the input to the two tracts being rather similar, the results now indicate differential odor processing along the tracts, therefore this is a good indicator for parallel processing. PNs of the m-APT process odors in a sparse manner with delayed response latencies, but with high odor-specificity. PNs of the l-APT in contrast respond to several odor stimuli and respond in general faster. In some PN originating from both tracts, characteristics of odor-identity coding via response latencies were found. Analyzing the over-all dynamic range of the PNs both l- and m-APT PNs were tested over a large odor concentration range (10-6 to 10-2) (3. chapter). The PNs responded with linear and non-linear correlation of the response strength to the odor concentration. In most cases the l-APT is comparatively more sensitive to low odor concentrations. Response latency decreases with increasing odor concentration in both tracts. Alternative coding principles and elaboration on the hypothesis whether the dual olfactory pathway may contribute coincidental innervation to the next higher-order neurons, the Kenyon cells (KC), is subject of the 4. chapter. Cross-correlations and synchronous responses of both tracts show that in principle odors may be coded via temporal coding. Results suggest that odor processing is enhanced if both tracts contribute to olfactory coding together. In another project the distribution of the inhibitory neurotransmitter GABA (gamma-aminobutyric acid) was measured in the bee’s MB during adult maturation (5. chapter). GABAergic inhibition is of high importance in odor coding. An almost threefold decrease in the total amount of GABAergic innervation was found during adult maturation in the l- and m-APT target region, in particular at the change in division of labor during the transition from a young nurse bee to an older forager bee. The results fit well into the current understanding of brain development in the honeybee and other social insects during adult maturation, which was described as presynaptic pruning and KC dendritic outgrowth. Combining anatomical and functional properties of the bee’s dual olfactory pathway suggests that both rate and temporal coding are implemented along two parallel streams. Comparison with recent work on analog output pathways of the vertebrate’s OB indicates that parallel processing of olfactory information may be a common principle across distant taxa. N2 - In ihrem natürlichen Lebensraum sind Lebewesen mit komplexen und hoch dynamischen olfaktorischen Reizen konfrontiert, was eine schnelle und zuverlässige Duft-Verarbeitung sowohl bei Insekten als auch bei Wirbeltieren erfordert. Im visuellen oder auditorischen System wird sensorischer Eingang durch Parallel-Verarbeitung schneller und effektiver an höhere Gehirnzentren übertragen und verarbeitet. Im olfaktorischen System ist generell und im speziellen über Parallel-Verarbeitung noch wenig bekannt. Die Honigbiene stellt jedoch mit ihrer hoch spezialisierten Duftwahrnehmung und ihrem Duft und Pheromon gesteuerten Verhalten aufgrund ihrer Neuroanatomie einen besonderen Modelorganismus für die Erforschung der Duftverarbeitung und insbesondere der olfaktorischen Parallel-Verarbeitung dar. Honigbienen besitzen „duale olfaktorische Bahnen“, die ausschließlich in Hymenopteren (Bienen, Ameisen, Wespen) als Merkmal ausgeprägt sind. Gebildet werden sie aus zwei spiegelbildlichen Projektions-Neuronen (PN) Ausgangs-Trakten, die das erste olfaktorische Verarbeitungs-Zentrum, den Antennal-Lobus (vergleichbar mit dem Olfaktorischen Bulbus der Wirbeltiere, OB) mit sekundären Verarbeitungszentren, dem Pilzkörper (MB) und dem lateralen Horn (LH) verbinden. Der mediale Antennal-Lobusprotocerebrale Trakt (m-APT) innerviert erst den MB und dann das LH, der laterale Trakt (l-APT) projiziert in umgekehrter Reihenfolge. Der MB ist bei Orientierung, Lernen und Gedächtnis involviert, über die Funktion des LH ist in der Biene noch wenig bekannt. Über die Neuroanatomie und Evolution dieser dualen Bahnen wurde viel geforscht, die Funktion und damit ihre Physiologie sind allerdings noch unzureichend aufgeklärt. Die vorliegende Dissertation beschäftigt sich deshalb mit der Duftverarbeitung im Bienengehirn und im Speziellen mit Parallelverarbeitung in der Olfaktorik. Für die Aufklärung wurde eine neu entwickelte und in dieser Dissertation beschriebene Messmethode etabliert (1. Kapitel). Mit Hilfe dieser Messapparatur (Multi-Unit Recordings) ist es jetzt das erste Mal möglich, hoch-zeitaufgelöst simultan aus beiden Trakten mehrere PNs auf unterschiedliche Düfte hin zu untersuchen. Das 2. Kapitel beschäftigt sich eingehender mit der Analyse von Duftanworten der PN. Die Hauptergebnisse sind, dass beide Trakte auf alle getesteten Düfte regieren, dies aber mit unterschiedlichen Charakteristiken tun. Da gezeigt wurde, dass beide Trakte ähnlichen olfaktorischen Eingang erhalten, die Trakte aber Düfte unterschiedlich verarbeiten, stellen diese Ergebnisse ein erstes Indiz für Parallelverarbeitung im olfaktorischen System der Biene dar. M-APT PN reagieren mit Zeitverzögerung und duftspezifisch, d.h. selektiver auf Düfte. Dagegen reagieren l-APT PN vergleichsweise schneller und duft-unspezifischer auf die in dieser Arbeit verwendeten Düfte. In einigen PN beider Trakte wurde gefunden, dass die PN Duft-Identitäten über duftspezifische Antwort-Latenzen abgebildet werden können. Um Aufschluss über die Gesamtdynamik der PN zu gewinnen, wurden l- und m-APT PN Antworten über weite Duftkonzentrationen (10-6 bis 10-2) hin untersucht (3. Kapitel). Die PN reagierten mit linearen und nicht-linearen Korrelationen. Zudem sind in den meisten Fällen l-APT PN bei schwachen Duftkonzentrationen sensitiver. Die Antwort-Latenz ist zur Duftkonzentration in beiden Trakten negativ-proportional. Alternative Kodierungsmöglichkeiten und die Ausarbeitung der Hypothese, dass die dualen Bahnen eine Koinzidenzverschaltung auf die nächst höheren Neurone, die Kenyon Zellen (KC), bilden könnten, wird im 4. Kapitel behandelt. Dazu zeigen Kreuz-Korrelationsanalysen und synchrone Antwortmuster aus beiden Trakten, dass prinzipiell Düfte auch über Zeit-Kodierung verarbeitet werden können. Generell zeigt sich, dass die dualen olfaktorischen Bahnen eine verbesserte Duftkodierung gegenüber einem Trakt gewährleisten. In einem weiteren Ansatz wurde die alterskorrelierte Plastizität der inhibitorischen GABAergen (gamma-Aminobuttersäure) Innervation im Pilzkörper der Biene während der Adult-Reifung bestimmt (5. Kapitel). Inhibition ist für olfaktorische Kodierung sehr wichtig. Eine fast dreifache Reduktion in der Gesamtmenge von GABA wurde während der Adult-Reifung in beiden Zielregionen der dualen olfaktorischen Bahn gleichermaßen gefunden. Dieser Effekt wurde mit einer insgesamt halbierten GABA Innervierung ebenfalls im visuellen Innervationsgebiet des MB gefunden. Die Ergebnisse passen gut in das derzeitige Verständnis von Adultplastizität der Pilzkörper in der Honigbiene, in denen eine Ausdünnung (Pruning) präsynaptischer Endigungen von PN und ein Auswachsen von KC-Dendriten beschrieben wurde. Aus den neuroanatomischen und physiologischen Eigenschaften der dualen olfaktorischen Bahnen lässt sich schlussfolgern, dass Düfte sowohl über Raten- als auch Zeit-Kodierung bis hin zu Koinzidenz-Verschaltungen verarbeitet werden können. Zudem zeigen derzeitige Arbeiten über analoge Ausgangs-Trakte im OB von Wirbeltieren, dass Parallelverarbeitung im olfaktorischen System ein allgemeines Kodierungsprinzip über weit entfernte Taxa zu sein scheint. KW - Tierphysiologie KW - Geruchssinn KW - Nervennetz KW - Nervenzelle KW - Biene KW - Antennallobus KW - antennal lobe KW - olfaction KW - multi-unit recording KW - Insekten KW - Geruch KW - Physiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85600 ER - TY - THES A1 - Engelhardt [geb. Christiansen], Frauke T1 - Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster T1 - Synaptische Konnektivität im Pilzkörper Kalyx in Drosophila melanogaster N2 - Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods – the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells – can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx. N2 - Synaptische Plastizität an den präsynaptischen Spezialisierungen von Neuronen sind nach allgemeinem Verständnis die Grundlage für Lern- und Gedächtnisprozesse. Kenyon Zellen sind die intrinsischen Zellen des Zentrums für olfaktorisches Lernen im Gehirn von Arthropoden – den Pilzkörper Neuropilen. An den Präsynapsen der Kenyon Zellen wird eine olfaktorische Gedächtnisspur vermutet. Im Kalyx, einer Substruktur der Pilzkörper, erhalten die Kenyon Zell Dendriten ihren olfaktorischen Input durch Projektionsneurone. Ihre Präsynapsen wiederum befinden sich ausschließlich in ihren axonalen Kompartimenten außerhalb des Kalyx, nämlich in den Loben der Pilzkörper. Mit Hilfe von hochauflösenden bildgebenden Techniken und neuen transgenen Methoden, ist es uns in der Fruchtfliege Drosophila melanogaster gelungen, Kenyon Zell Präsynapsen im Kalyx zu identifizieren. Diese Präsynapsen enthalten synaptische Vesikel, die nach Stimulation ihren Inhalt freisetzen können. Sie weisen noch weitere Gemeinsamkeiten mit den meisten anderen Präsynapsen auf: Ihre Aktiven Zonen, die Orte der Transmitterfreisetzung, enthalten die Proteine Bruchpilot und Syd-1. Diese sind Teil der Zytomatrix an der Aktiven Zone, ein Proteingerüst das Endo- und Exozytose der synaptischen Vesikel kontrolliert. Die Präsynapsen im Kalyx wurden in γ- and α/β-Typ Kenyon Zellen aber nicht in α/β-Typ Kenyon Zellen gefunden. Die neu identifizierten Kenyon Zell Präsynapsen beherbergen potentiell eine Gedächtnisspur für olfaktorisch assoziatives Lernen. Möglicherweise wird im olfaktorischen Nervensystem von Fruchtfliegen rücklaufende neuronale Aktivität benötigt, um Gedächtnis abzurufen, so wie es auch für Säuger beschrieben ist. Darüber hinaus zeigen wir synaptische Plastizität im Kalyx. Dies ist die erste Beschreibung überhaupt von synaptischer Plastizität im zentralen Nervensystem von Drosophila melanogaster. Das Volumen des Kalyx kann sich als Antwort auf äußere Einflüsse verändern. Genauso auch Größe und Anzahl der Mikroglomeruli, Substrukturen des Kalyx, in denen Projektionsneurone und Kenyon Zellen aufeinander treffen. Wir untersuchten die Synapsen in Mikroglomeruli detailliert, mithilfe von neuen transgenen Methoden, die es erlauben, präsynaptische Aktive Zonen sowie Postsynaptische Spezialisierungen zu visualisieren. Mittels Beeinträchtigung der Kommunikation zwischen Projektionsneuronen und Kenyon Zellen, konnten wir synaptische Plastizität in Mikroglomeruli zeigen. Projektionsneurone, die nicht in der Lage waren, Aktionspotentiale zu erzeugen, kompensierten ihre funktionelle Einschränkung durch den vermehrten Einbau von Aktiven Zonen in Mikroglomeruli. Außerdem produzierten sie mehr und vergrößerte Mikroglomeruli. Unsere Daten zeigen deutlich eine aktivitätsinduzierte Veränderung des olfaktorischen neuronalen Netzes, sowie strukturelle synaptische Plastizität im Kalyx. KW - Taufliege KW - Pilzkörper KW - Drosophila melanogaster KW - mushroom body KW - calyx KW - Geruch KW - Lernen KW - Gedächtnis KW - Kalyx Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85058 ER -