TY - THES A1 - Meyer, Sebastian T1 - Model System for Correlation Phenomena in Reduced Dimensions - Gold-induced Atomic Chains on Germanium T1 - Modellsystem für Korrelationsphänomene in niedrigen Dimensionen - Gold-induzierte Atomketten auf Germanium N2 - Atomic chains, often called nanowires, form in a self-organized process after the adsorption of metal atoms. These wires are spatially well confined representing a close approach of a true one-dimensional structure. The low-dimensional architecture thereby often leads to anisotropic electronic states with vanishing interchain interaction. In the presence of weak coupling to the substrate a one-dimensional metal can experience a phase transition according to Peierls into an insulating ground state upon temperature, which is accompanied by a periodic lattice distortion. Without any coupling a strict onedimensional regime is reached, where the common Fermi liquid description breaks down with the quasi-particles being replaced by collective excitations of spin and charge. This state is referred to as a Tomonaga-Luttinger liquid (TLL), which has been observed so far only in anisotropic bulk materials. An experimental fingerprint for both phenomena can be obtained from the electronic states close to the chemical potential, i.e. the Fermi energy. Using a semiconducting substrate provides the best observation conditions since any bulk projection onto the interesting bands is avoided. In case of Au/Ge(001) the growth of gold-induced chains is guided by the dimerized bare Ge (2×1) reconstruction yielding two different domains of wires rotated by 90° going from one terrace to the next by a single height step. The superior wetting capabilities of gold on germanium enables a complete coverage of the Ge(001) surface with longrange ordered wires. Their length scale and defect density is limited by the underlying substrate, for which a cleaning procedure is introduced based on wet-chemical etching followed by thermal dry oxidation. The band structure of Au/Ge(001) is investigated by angle-resolved photoelectron spectroscopy as a function of temperature. Two states are observed: a two-dimensional metallic state with hole-like dispersion and a one-dimensional electron pocket, whose band-integrated spectral function does not show the typical Fermi distribution at the chemical potential. Instead, a decrease of spectral weight applies following a power-law. This behavior can be well explained within the Tomonaga-Luttinger liquid theory which replaces the Fermi-Landau formalism in strictly one-dimensional systems. To enable theoretical modeling, a structural analysis was performed on the basis of surface x-ray diffraction (SXRD). From the in-plane scattering data a Patterson-map could be extracted leading to in-plane distances between gold atoms in the unit cell. This provides the first step towards a complete structural model and therefore towards a band structure calculation. First successful attempts have been made to manipulate the system by controlled adsorption of potassium. Here, an n-type doping effect is observed for submonolayer coverage whereas slightly increased coverages in combination with thermal energy lead to a new surface reconstruction. N2 - Atomare Ketten, sogenannte Nano-Drähte, entstehen durch Selbstorganisation adsorbierter Metallatome auf einer Halbleiteroberfläche. Aufgrund der starken räumlichen Einschränkung der Ladungsträger innerhalb dieser Ketten entsteht dabei oftmals eine metallische Bandstruktur mit starker Anisotropie. Im Falle phononischer Ankopplung an das Substrat kann so ein eindimensionales (1D) Metall instabil gegen eine periodische Gitterverzerrung werden, bei der es zu einer Ausbildung einer Energielücke kommt. Dieser Metall-Isolator-Übergang wird dabei als Peierls Übergang bezeichnet. Für verschwindend geringe Kopplung der Ketten untereinander bzw. an das Substrat, d.h. im strikt eindimensionalen Fall, bricht das Fermi Flüssigkeitsmodell für dreidimensionale (3D) Metalle zusammen. Dessen Quasiteilchen werden durch kollektive Anregungen von Spin und Ladung ersetzt. Diesen Zustand bezeichnet man als Tomonaga-Luttinger Flüssigkeit. Beide Phänomene, Peierlsübergang und Tomonaga-Luttinger Flüssigkeit lassen sich anhand der elektronischen Bandstruktur experimentell nachweisen. Bei dem hier untersuchten Probensystem handelt es sich um Gold-induzierte Nandrähte auf der Germanium (001)-Oberfläche, kurz Au/Ge(001). Deren Wachstum erfolgt epitaktisch entlang der durch das Substrat vorgegebenen Dimer-Reihen, welche die freie Germaniumoberfläche in Form einer (2×1)-Symmetrie einnimmt. Die abwechselnde Stapelfolge ABAB des Substrates führt dabei zu zwei unterschiedlichen Drahtrichtungen, die jeweils um 90° zueinander gedreht sind, wenn man eine Einfachstufe von 1.4 A von einer A-Terrasse auf eine B-Terrasse oder umgekehrt geht. Die vorherrschende Kinetik während der Gold-Deposition bzw. das Benetzungsverhalten ermöglicht dabei eine vollständige Bedeckung der vormals freien Oberfläche mit Nanodrähten, deren Abmessungen einzig und allein durch Defekte bzw. die Größe der darunterliegenden Ge-Terrasse begrenzt sind. Um die Längenskala der Subtrat-Terrassen zu optimieren, wurde eine Reinigungsprozedur für Ge (001) entwickelt, bei der nass-chemisches Ätzen mit anschliessender Trocken-Oxidation zum Einsatz kommt. Die darauf aufbauenden Nanodrähte wurden im Anschluss mittels winkelaufgelöster Photoelektronenspektroskopie auf ihre elektronische Bandstruktur untersucht. Dabei wurden zwei neuartige Zustände beobachtet: ein metallischer, zweidimensionaler Loch-Zustand, der seinen Ursprung höchstwahrscheinlich in tieferen Schichten des Germaniums hat; und ein eindimensionaler Oberflächenzustand mit elektronenartiger Dispersion, dessen bandintegrierte Spektralfunktion von der einer Fermiflüssigkeit abweicht. Stattdessen wird ein exponentieller Abfall des spektralen Gewichtes als Funktion der Energie zum Ferminiveau hin beobachtet. Dieses Verhalten kann über einen weiten Temperaturbereich beobachtet werden und lässt sich mit der Tomonaga-Luttinger Flüssigkeit für strikt eindimensionale Systeme erklären. Zum weiteren theoretischen Verständnis dieses Phänomes, beispielsweise durch Bandstrukuturrechnungen mittels Dichte-Funktional-Theorie, bedarf es der genauen Kenntnis der atomaren Struktur dieser Ketten. Selbige wurde mittels Oberflächenröntgenbeugung (engl. surface x-ray diffraction, SXRD) untersucht. Auf Basis der gewonnenen Patterson-Karte lassen sich Rückschlüsse auf die interatomaren Abstände der Goldatome untereinander in der Einheitszelle ziehen. Dies stellt einen ersten wichtigen Schritt auf dem Weg zu einem vollständigen Strukturmodell dar. Darüber hinaus wurden erste vielversprechende Schritte unternommen, das Nanodrahtsystem kontrolliert zu manipulieren. Durch geringfügige, zusätzliche Deposition von Kalium konnte dabei eine schrittweise Erhöhung der Bandfüllung erzielt werden. Für weitergehende Kaliumanlagerungen im (Sub-)Monolagenbereich konnte sogar eine neue Rekonstruktion erzielt werden. KW - Nanodraht KW - Germanium KW - Gold KW - Elektronenflüssigkeit KW - winkelaufgelöste Photoelektronenspektroskopie KW - Self-assembly KW - Onedimensional KW - Luttinger liquid KW - angle-resolved photoemission KW - Adsorbat KW - Halbleiteroberfläche KW - Luttinger-Flüssigkeit KW - Oberflächenphysik KW - Nanowire Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77723 ER - TY - THES A1 - Reis, Felix T1 - Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide T1 - Realisierung und Spektroskopie des Quanten-Spin-Hall-Isolators Bismuten auf Siliziumkarbid N2 - Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel. N2 - Topologische Materie ist seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen im Jahr 2005 eines der spannendsten Forschungsgebiete der gegenwärtigen Festkörperphysik. Quanten-Spin-Hall-Isolatoren besitzen zwar eine verschwindende Volumen-Leitfähigkeit, aber symmetriegeschützte, helikale Randzustände, welche verlustfreien Ladungstransport erlauben. Der 2007 erfolgte experimentelle Nachweis dieses außergewöhnlichen Materiezustands führte, inspiriert von möglicherweise bahnbrechenden zukünftigen Anwendungen, zu einem sprunghaften Anstieg der Forschungsaktivitäten auf diesem Gebiet. Jedoch ist der Nutzen der derzeit verfügbaren Quanten-Spin-Hall-Materialien aufgrund ihrer vergleichsweise kleinen Volumen-Bandlücken auf kryogene Temperaturen beschränkt. In dieser Arbeit verfolgen wir einen neuen Weg, ein Quanten-Spin-Hall-Material mit einer großen Energielücke zu realisieren und wachsen Bismuten, ein Honigwabengitter aus Bi-Atomen, epitaktisch in einer \((\sqrt{3}\times\sqrt{3})\)-Rekonstruktion auf den Halbleiter SiC(0001). Dadurch nutzen wir sowohl die Honigwaben-Symmetrie, als auch die große Spin-Bahn-Wechselwirkung von Bi aus, welche in Kombination zu einer topologisch nicht-trivialen Bandlücke in der Größenordnung eines Elektronenvolts führen. Eine eingehende theoretische Analyse zeigt, dass die kovalente Bindung zwischen den Si- und Bi-Atomen nicht nur den Bi-Film stabilisiert, sondern entscheidend zur Ausprägung der Quanten-Spin-Hall-Phase beiträgt. Die Präparation unrekonstruierter SiC(0001)-Substrate hoher Güte ist der Grundstein für das Bismutenwachstum und erfordert die Anwendung einer aufwändigen Prozedur in hochreinem, trockenem H\(_2\)-Gas. Messungen mit Rastertunnelmikroskopie enthüllen die (\(1\times1\))-Periodizität der Oberfläche und glatte Terrassenebenen, welche für das Aufwachsen einzelner Bi-Lagen mittels eines dedizierten Molekularstrahlepitaxieprozesses geeignet sind. Die chemische Konfiguration der Filme und ihre Oxidation nach Kontakt mit Umgebungsluft wird mit Röntgenphotoelektronenspektroskopie untersucht. Winkelaufgelöste Photoelektronenspektroskopie legt die exzellente Übereinstimmung zwischen gemessener und berechneter Bandstruktur offen. Insbesondere zeigt sie die charakteristische Rashba-Spinaufspaltung der Valenzbänder am K-Punkt. Messungen mit Rastertunnelspektroskopie beinhalten ebenso Hinweise dieser Aufspaltung, und ermöglichen die Bestimmung der vollständigen Größe der Bandlücke von \(E_\text{gap}\approx0.8\,\text{eV}\). Konstantstrom-Aufnahmen und Karten der lokalen Zustandsdichte bestätigen die Ausbildung eines planaren Honigwabengitters, welches aufgrund unterschiedlicher, jedoch äquivalenter Nukleationszentren der (\(\sqrt{3}\times\sqrt{3}\))-Bi-Rekonstruktion in mehreren Domänen auftritt. Messungen der differenziellen Leitfähigkeit offenbaren, dass sich Bismuten-Randzustände an atomaren Stufen des SiC-Substrats ausbilden. Die gemessene, lokale Zustandsdichte und die gemäß der Energiedispersion des Randzustands in Dichtefunktionaltheorierechnungen erwartete Zustandsdichte stimmen - abgesehen von einem starken Abfall am Fermi-Niveau - überein. Mit temperatur- und energieabhängiger Tunnelspektroskopie wird gezeigt, dass die spektralen Eigenschaften dieser unterdrückten Leitfähigkeit erfolgreich im Rahmen der Tomonaga-Luttinger-Flüssigkeitstheorie beschrieben und wahrscheinlich durch verstärkte elektronische Korrelationen im Randkanal ausgelöst werden. KW - Zweidimensionales Material KW - Topologischer Isolator KW - Siliziumcarbid KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - Bismuthene KW - Silicon Carbide KW - scanning tunneling spectroscopy KW - photoelectron spectroscopy KW - molecular beam epitaxy KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - helical edge states KW - Luttinger liquid KW - honeycomb lattice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258250 ER -