TY - THES A1 - Bayer, Florian T1 - Investigating electromagnetic properties of topological surface states in mercury telluride T1 - Untersuchung elektromagnetischer Eigenschaften topologischer Oberflächenzustände in Quecksilber-Tellurid N2 - This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis. N2 - Diese Doktorarbeit untersucht die magneto-optischen Eigenschaften zugverspannter Quecksilbertelluridschichten auf Cadmiumtelluridsubstraten. Die Schichtdicken sind hierbei dicker als die gewöhnlicher Quantentrogsysteme bis etwa 20 nm und nach oben hin beschränkt durch Gitterrelaxationeffekte ab ca. 100 nm. Dieses Schichtsystem wurde in zahlreichen Publikationen der Materialklasse dreidimensionaler Topologischer Isolatoren zugeordnet, welche sich durch intrinsische Grenzflächenzustände auszeichnet, die energetisch in der Bandlücke des Schichtinneren liegen. Um die Eigenschaften der Bandstruktur im direkten Umfeld der Fermi-Kante, inklusive etwaiger Grenzflächenzustände, untersuchen zu können, kommt die Methode der hochpräzisen Zeitdomänen-Terahertz-Polarimetrie zum Einsatz. Der Stand der dazu nötigen Technik wird zu Beginn der Doktorarbeit einleitend diskutiert und der daraus entstandene Messaufbau wird im Detail beschrieben, sowie dessen Charakterisierung erläutert. Die typischerweise erzielbare Standardabweichung einer Messung liegt, je nach Transmissionsgrad der untersuchten Probenstrukturen, im Bereich weniger 10 bis 100 Tausendstel Grad für die Polarisationgrößen Rotation und Elliptizität. In Abhängigkeit externer Magnetfelder bis hin zu 10 Telsa ergeben sich so mittels Fourier-Transformation des Zeitsignals verschiedene Polarisationspektren. Der Rückschluss auf die zugrunde liegende Bandstruktur gelingt durch die Modellierung möglicher Bandstrukturen mittels der Einhüllenden-Funktionen-Näherung der k·p-Methode. Hierzu wird zunächst die Bandstruktur nach den gewählten Modellparametern berechnet und aus dieser wiederum die zu erwartenden Elliptizitätsspektren in Abhängigkeit des externen Magnetfeldes und der Ladungsträgerkonzentration berechnet. Aus dem Vergleich berechneter und tatsächlich gemessener Spektren wird im Laufe der Arbeit die Validität verschieden detaillierter k·p-Modelle analysiert. Die reichhaltigen Informationen aus der Elliptizitätsmesung liefern bei der Zuordnung einzelner optischer Übergänge entscheidende Hinweise, die in reiner Absorptionsspektroskopie nicht enthalten sind. So ist das Vorzeichen der Elliptizität verknüpft mit der Zusammensetzung der am optischen Übergang beteiligten Landau-Level Zustände. Dies ermöglicht einen direkten Nachweis sogenannter Bulk-Inversions-Asymmetrie-Effekte aus den Spektren. Im Verlauf der Arbeit wird zudem wiederholt ein Vergleich der Ergebnisse mit existierenden Publikationen gezogen, wobei sich zeigt, dass dort verwendete Modelle häufig unzureichend oder inkorrekt sind. Wo immer dies sinnvoll und ohne größeren Aufwand möglich ist, werden die Unterschiede zu Aussagen, die aus dem k·p-Modell heraus getroffen werden können, diskutiert. Zum Ende der Analyse hin wird verstärkt auf die Grenzen der k·p-Methode eingegangen und verbleibende Abweichungen zwischen Modell und Messung diskutiert. Dies beinhaltet sowohl die Qualität der verwendeten Modellparameter, als auch verschiedene Versuche, die in den Strukturen vorhandenen elektrostatischen Potentiale mit in die Modellierung zu integrieren. Abschließend wird ein Ausblick auf mögliche zukünftige Entwicklungen des Quecksilbercadmiumtellurid Schichtsystems und die Anwendung der hier vorgestellten Methodiken auf weitere Fragestellungen gegeben. KW - Quecksilbertellurid KW - Topologie KW - Oberfläche KW - Mercury telluride KW - Topology KW - THz KW - Surface Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352127 ER - TY - THES A1 - Budich, Jan Carl T1 - Fingerprints of Geometry and Topology on Low Dimensional Mesoscopic Systems T1 - Signaturen der Geometrie und Topologie in niedrigdimensionalen mesoskopischen Systemen N2 - In this PhD thesis, the fingerprints of geometry and topology on low dimensional mesoscopic systems are investigated. In particular, holographic non-equilibrium transport properties of the quantum spin Hall phase, a two dimensional time reversal symmetric bulk insulating phase featuring one dimensional gapless helical edge modes are studied. In these metallic helical edge states, the spin and the direction of motion of the charge carriers are locked to each other and counter-propagating states at the same energy are conjugated by time reversal symmetry. This phenomenology entails a so called topological protection against elastic single particle backscattering by time reversal symmetry. We investigate the limitations of this topological protection by studying the influence of inelastic processes as induced by the interplay of phonons and extrinsic spin orbit interaction and by taking into account multi electron processes due to electron-electron interaction, respectively. Furthermore, we propose possible spintronics applications that rely on a spin charge duality that is uniquely associated with the quantum spin Hall phase. This duality is present in the composite system of two helical edge states with opposite helicity as realized on the two opposite edges of a quantum spin Hall sample with ribbon geometry. More conceptually speaking, the quantum spin Hall phase is the first experimentally realized example of a symmetry protected topological state of matter, a non-interacting insulating band structure which preserves an anti-unitary symmetry and is topologically distinct from a trivial insulator in the same symmetry class with totally localized and hence independent atomic orbitals. In the first part of this thesis, the reader is provided with a fairly self-contained introduction into the theoretical concepts underlying the timely research field of topological states of matter. In this context, the topological invariants characterizing these novel states are viewed as global analogues of the geometric phase associated with a cyclic adiabatic evolution. Whereas the detailed discussion of the topological invariants is necessary to gain deeper insight into the nature of the quantum spin Hall effect and related physical phenomena, the non-Abelian version of the local geometric phase is employed in a proposal for holonomic quantum computing with spin qubits in quantum dots. N2 - In dieser Doktorarbeit wird der Zusammenhang zwischen den mathematischen Bereichen der modernen Differentialgeometrie sowie der Topologie und den physikalischen Eigenschaften niedrigdimensionaler mesoskopischer Systeme erläutert. Insbesondere werden Phänomene des holographischen Quantentransportes in Quanten Spin Hall Systemen fernab des thermodynamischen Gleichgewichtes untersucht. Die Quanten Spin Hall Phase ist ein zweidimensionaler, zeitumkehrsymmetrischer elektrisch isolierender Zustand, dessen charakteristische Eigenschaft eindimensionale metallische Randzustände sind. Diese im Englischen als “helical edge states” bezeichneten Randkanäle zeichnen sic h dadurch aus, dass Spin und Bewegungsrichtung der Ladungsträger fest miteinander verknüpft sind und zwei Zustände mit gleicher Energie aber unterschiedlicher Bewegungsrichtung stets durch die Symmetrieoperation der Zeitumkehr zusammenhängen. Diese Phänomenologie bedingt einen sogenannten topologischen Schutz durch Zeitumkehrsymmetrie gegen elastische Einteilchenrückstreuung. Wir beschäftigen uns mit den Grenzen dieses Schutzes, indem wir inelastische Rückstreuprozesse in Betracht ziehen, wie sie etwa durch das Wechselspiel von extrinsischer Spin-Bahn Kopplung und Gitterschwingungen induziert werden können, oder aber indem wir Mehrteilchen-Streuprozesse untersuchen, welche die Coulomb-Wechselwirkung ermöglicht. Desweiteren werden Anwendungen aus dem Gebiet der Spintronik vorgeschlagen, welche auf einer dem Quanten Spin Hall Effekt eigenen Dualität zwischen dem Spin und dem Ladungsfreiheitsgrad beruhen. Diese Dualität existiert in einem aus zwei Randzuständen mit entgegengesetzter Helizität zusammengesetzten System, wie etwa durch zwei gegenüberliegende Ränder einer streifenförmigen Probe im Quanten Spin Hall Zustand realisiert. Konzeptionell gesehen ist der Quanten Spin Hall Zustand das erste experimentell nachgewiesene Beispiel eines symmetriegeschützten topologischen Zustandes nichtwechselwirkender Materie, also eines Bandisolators, welcher eine antiunitäre Symmetrie besitzt und sich von einem trivialen Isolator mit gleicher Symmetrie aber ausschliesslich lokalisierten und daher voneinander unabhängigen atomaren Orbitalen topologisch unterscheidet. Im ersten Teil dieser Dissertation geben wir eine Einführung in die theoretischen Konzepte, welche dem Forschungsgebiet der nichtwechselwirkenden topologischen Zustände zugrunde liegen. In diesem Zusammenhang werden die topologischen Invarianten, welche diese neuartigen Zustände charakterisieren, als globales Analogon zur lokalen geometrischen Phase dargestellt, welche mit einer zyklischen adiabatischen Entwicklung eines physikalischen Systems verknüpft ist. Während die ausführliche Diskussion der globalen Invarianten einem tieferen Verständnis des Quanten Spin Hall Effektes und damit verwandten physikalischen Phänomenen dienen soll, wird die nicht-Abelsche Variante der lokalen geometrischen Phase für einen Vorschlag zur Realisierung von holonomiebasierter Quanteninformationsverarbeitung genutzt. Das Quantenbit der von uns vorgeschlagenen Architektur ist ein in einem Quantenpunkt eingesperrter Spinfreiheitsgrad. KW - Topologischer Isolator KW - Quantenspinsystem KW - Quanten-Hall-Effekt KW - Topologische Isolatoren KW - Quanten Spin Hall Effekt KW - Berry Phase KW - Topology KW - Topological Insulator KW - Topolgical Phase KW - Quantum spin Hall KW - Keldysh formalism KW - Adiabatic Theorem of quantum mechanics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76847 ER - TY - THES A1 - Eck, Philipp T1 - Symmetry Breaking and Spin-Orbit Interaction on the Triangular Lattice T1 - Symmetriebruch und Spin-Bahn-Kopplung im Dreiecksgitter N2 - Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele, \(Z_2\) topology in hexagonal monolayers is indissociably linked to high-symmetric honeycomb lattices. This thesis breaks with this paradigm by focusing on topological phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice. In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state only in the presence of inversion symmetry breaking. This tends to displace the valence charge form the atomic position. Therefore, all non-trivial phases are real-space obstructed. Inspired by the contemporary conception of topological classification of electronic systems, a comprehensive lattice and band symmetry analysis of insulating phases of a \(p\)-shell on the triangular lattice is presented. This reveals not only the mechanism at the origin of band topology, the competition of SOC and symmetry breaking, but sheds also light on the electric polarization arising from a displacement of the valence charge centers from the nuclei, i. e., real-space obstruction. In particular, the competition of SOC versus horizontal and vertical reflection symmetry breaking gives rise to four topologically distinct insulating phases: two kinds of quantum spin Hall insulators (QSHI), an atomic insulator and a real-space obstructed higher-order topological insulator. The theoretical analysis is complemented with state-of-the-art first principles calculations and experiments on trigonal monolayer adsorbate systems. This comprises the recently discovered triangular QSHI indenene, formed by In atoms, and focuses on its topological classification and real-space obstruction. The analysis reveals Kane-Mele-type valence bands which profit from the atomic SOC of the triangular lattice. The realization of a HOTI is proposed by reducing SOC by considering lighter adsorbates. Further the orbital Rashba effect is analyzed in AgTe, a consequence of mirror symmetry breaking, the formation of local angular momentum polarization and SOC. As an outlook beyond topology, the Fermi surface and electronic susceptibility of Group V adsorbates on silicon carbide are investigated. In summary, this thesis elucidates the interplay of symmetry breaking and SOC on the triangular lattice, which can promote non-trivial insulating phase. N2 - Seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen durch Kane und Mele wird die \(Z_2\) Topologie in hexagonalen Monolagen unausweichlich mit hochsymmetrischen Honigwabengittern assoziiert. Diese Dissertation bricht mit diesem Paradigma, indem sie sich auf topologische Phasen im fundamentalen zweidimensionalen hexagonalem Kristall, dem Dreiecksgitter, konzentriert. Im Gegensatz zu Kane-Mele-artigen Systemen profitieren Elektronen im Dreiecksgitter von einer beträchtlichen, weil lokalen, Spin-Bahn-Kopplung (SBK). Ein nicht-trivialer Grundzustand erfordert das Brechen der Inversionssymmetrie. Gleichzeitig führt dies zu einer Dislokation der Valenzelektronen weg von der atomaren Position. Daher sind alle nicht-trivialen Phasen real-space obstructed. Inspiriert durch die gegenwärtige Auffassung der topologischen Klassifikation von elektronischen Systemen wird eine umfassende Analyse der Gitter- und Bandsymmetrie der isolierenden Phasen einer \(p\)-Schale auf dem Dreiecksgitter präsentiert. Dies offenbart nicht nur den bestimmenden Mechanismus der Bandtopologie, den Wettbewerb von SBK und Symmetriebruch. Letzterer bestimmt auch die elektrische Polarisation, die sich aus der Verschiebung der Valenzladungszentren von den Kernen ergibt. Insbesondere führt der Wettbewerb zwischen SBK und horizontalem sowie vertikalem Reflexionssymmetriebruch zu vier topologisch unterschiedlichen isolierenden Phasen: zwei Quanten-Spin-Hall Isolatoren (QSHI), ein atomarer Isolator und ein real-space obstructed Isolator höherer Ordnung. Die theoretische Analyse wird ergänzt durch moderne ab initio Berechnungen und Experimente an trigonalen Monolagen-Adsorbatsystemen. Dies umfasst den erst kürzlich entdeckten QSHI Indenene, basierend auf einer Dreieckslage von In Atomen, und konzentriert sich auf dessen topologische Klassifikation und Ladungsträgerlokalisation. Die Analyse ergibt Kane-Mele-artige Valenzbänder, die von der atomaren SBK des Dreiecksgitters profitieren. Die Realisierung eines HOTI wird vorgeschlagen, indem die SBK durch die Verwendung leichterer Adsorbate reduziert wird. Weiterhin wird der Orbitale Rashba-Effekt in AgTe analysiert, eine Folge der Spiegelsymmetriebruch, der Bildung von lokalem orbitalem Bahndrehimpuls und SBK. Als Ausblick über die Topologie hinaus werden die Fermi-Oberfläche und die elektronische Suszeptibilität von Gruppe-V Adsorbaten auf Siliziumkarbid untersucht. Zusammenfassend erläutert diese Dissertation das Zusammenspiel von Symmetriebruch und SOC auf dem Dreiecksgitter, die Grundlage für nicht-triviale isolierende Phasen. KW - Topologie KW - Spin-Bahn-Wechselwirkung KW - Symmetrie KW - Bandstruktur KW - Dichtefunktionalformalismus KW - Topology KW - Spin-Orbit Coupling KW - Inversion Symmetry Breaking KW - Band Structure KW - Density Functional Theory KW - Real-Space Obstruction KW - Quantum Spin Hall Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-359186 ER -