TY - THES A1 - Rehberg, Martin T1 - Weighted uniform distribution related to primes and the Selberg Class T1 - Gewichtete Gleichverteilung im Zusammenhang mit Primzahlen und der Selberg-Klasse N2 - In the thesis at hand, several sequences of number theoretic interest will be studied in the context of uniform distribution modulo one.

In the first part we deduce for positive and real \(z\not=1\) a discrepancy estimate for the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \), where \(\gamma_a\) runs through the positive imaginary parts of the nontrivial \(a\)-points of the Riemann zeta-function. If the considered imaginary parts are bounded by \(T\), the discrepancy of the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) tends to zero like \( (\log\log\log T)^{-1} \) as \(T\rightarrow \infty\). The proof is related to the proof of Hlawka, who determined a discrepancy estimate for the sequence containing the positive imaginary parts of the nontrivial zeros of the Riemann zeta-function.

The second part of this thesis is about a sequence whose asymptotic behaviour is motivated by the sequence of primes. If \( \alpha\not=0\) is real and \(f\) is a function of logarithmic growth, we specify several conditions such that the sequence \( (\alpha f(q_n)) \) is uniformly distributed modulo one. The corresponding discrepancy estimates will be stated. The sequence \( (q_n)\) of real numbers is strictly increasing and the conditions on its counting function \( Q(x)=\#\lbrace q_n \leq x \rbrace \) are satisfied by primes and primes in arithmetic progessions. As an application we obtain that the sequence \( \left( (\log q_n)^K\right)\) is uniformly distributed modulo one for arbitrary \(K>1\), if the \(q_n\) are primes or primes in arithmetic progessions. The special case that \(q_n\) equals the \(\textit{n}\)th prime number \(p_n\) was studied by Too, Goto and Kano.

In the last part of this thesis we study for irrational \(\alpha\) the sequence \( (\alpha p_n)\) of irrational multiples of primes in the context of weighted uniform distribution modulo one. A result of Vinogradov concerning exponential sums states that this sequence is uniformly distributed modulo one. An alternative proof due to Vaaler uses L-functions. We extend this approach in the context of the Selberg class with polynomial Euler product. By doing so, we obtain two weighted versions of Vinogradov's result: The sequence \( (\alpha p_n)\) is \( (1+\chi_{D}(p_n))\log p_n\)-uniformly distributed modulo one, where \( \chi_D\) denotes the Legendre-Kronecker character. In the proof we use the Dedekind zeta-function of the quadratic number field \( \Bbb Q (\sqrt{D})\). As an application we obtain in case of \(D=-1\), that \( (\alpha p_n)\) is uniformly distributed modulo one, if the considered primes are congruent to one modulo four. Assuming additional conditions on the functions from the Selberg class we prove that the sequence \( (\alpha p_n) \) is also \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-uniformly distributed modulo one, where the weights are related to the Euler product of the function. N2 - In der vorliegenden Arbeit werden verschiedene zahlentheoretisch interessante Folgen im Kontext der Theorie der Gleichverteilung modulo eins untersucht.

Im ersten Teil wird für positiv reelles \( z\not = 1\) für die Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) eine Diskrepanzabschätzung hergeleitet, wobei \( \gamma_a\) die positiven Imaginärteile der nichttrivialen \(a\)-Stellen der Riemannschen Zetafunktion durchlaufe: Sind die eingehenden Imaginäteile durch \(T\) beschränkt, dann strebt für \(T\rightarrow \infty\) die Diskrepanz der Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) wie \( (\log\log\log T)^{-1}\) gegen Null. Der Beweis knüpft an das Vorgehen von Hlawka an, welcher eine Diskrepanzabschätzung für die Folge, in der die positiven Imaginärteile der nichttrivialen Nullstellen der Riemannschen Zetafunktion eingehen, ermittelte.

Der zweite Teil der Arbeit widmet sich einer Folge deren Wachstumsverhalten durch Primzahlen motiviert ist. Ist \(\alpha\not = 0\) reell und \(f\) eine logarithmisch wachsende Funktion, dann werden mehrere Bedingungen an \(f\) angegeben, unter denen die Folge \( (\alpha f(q_n)) \) gleichverteilt modulo eins ist. Entsprechende Diskrepanzabschätzungen der Folgen werden angegeben. Die Folge reeller Zahlen \( (q_n) \) ist selbst streng wachsend und die Bedingungen, die dabei an deren Zählfunktion \(Q(x)=\#\lbrace q_n \leq x \rbrace\) gestellt werden, sind von Primzahlen und Primzahlen in arithmetischen Progressionen erfällt. Als Anwendung ergibt sich, dass die Folge \( \left( (\log q_n)^K\right) \) für beliebiges \(K>1\) gleichverteilt modulo eins ist, etwa wenn die \(q_n\) Primzahlen oder Primzahlen in arithmetischen Progessionen durchlaufen. Der Spezialfall das \(q_n\) als die \(n\)te Primzahl \(p_n\) gewählt wird, wurde von Too, Goto und Kano untersucht.

Im letzten Teil der Arbeit wird für irrationales \(\alpha\) die Folge \( (\alpha p_n) \) irrationaler Vielfacher von Primzahlen im Rahmen der gewichteten Gleichverteilung modulo eins untersucht. Nach einem Resultat von Vinogradov über Exponentialsummen ist diese Folge gleichverteilt modulo eins. Ein alternativer Beweis von Vaaler verwendet L-Funktionen. Dieser Ansatz wird im Kontext von Funktionen aus der Selberg-Klasse mit polynomiellem Eulerprodukt ausgebaut. Dabei werden zwei gewichtete Versionen des vinogradovschen Resultats gewonnen: Die Folge \( (\alpha p_n) \) ist \( (1+\chi_{D}(p_n))\log p_n\)-gleichverteilt modulo eins, wobei \(\chi_{D}\) den Legendre-Kronecker Charakter bezeichnet. Der Beweis verwendet die Dedekindsche Zetafunktion zum quadratischen Zahlkörper \(\Bbb Q (\sqrt{D})\). Als Anwendung ergibt sich etwa für \(D=-1\), dass \( (\alpha p_n) \) gleichverteilt modulo eins ist, wenn die durchlaufenen Primzahlen kongruent zu eins modulo vier sind. Unter zusätzlichen Bedingungen an die Funktionen aus der Selberg-Klasse lässt sich weiter zeigen, das die Folge \( (\alpha p_n) \) auch \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-gleichverteilt modulo eins, wobei die Gewichte in direktem Zusammenhang mit dem Eulerprodukt der Funktion stehen. KW - Zahlentheorie KW - weighted uniform distribution modulo one KW - gewichtete Gleichverteilung modulo eins KW - Selberg Class KW - prime number KW - quadratic number field KW - Selberg Klasse KW - Diskrepanz KW - Primzahl KW - Selbergsche L-Reihe KW - Quadratischer Zahlkörper KW - Zetafunktion KW - Gleichverteilung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209252 ER - TY - THES A1 - Technau, Marc T1 - On Beatty sets and some generalisations thereof T1 - Über Beatty-Mengen und einige Verallgemeinerungen dieser N2 - Beatty sets (also called Beatty sequences) have appeared as early as 1772 in the astronomical studies of Johann III Bernoulli as a tool for easing manual calculations and - as Elwin Bruno Christoffel pointed out in 1888 - lend themselves to exposing intricate properties of the real irrationals. Since then, numerous researchers have explored a multitude of arithmetic properties of Beatty sets; the interrelation between Beatty sets and modular inversion, as well as Beatty sets and the set of rational primes, being the central topic of this book. The inquiry into the relation to rational primes is complemented by considering a natural generalisation to imaginary quadratic number fields. N2 - Zu gegebener Beatty-Menge \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) mit irrationalem \(\alpha>1\) und \(\beta\in\mathbb{R}\), sowie gegebener Primzahl \(p\) und hierzu teilerfremdem \(z\) untersuchen wir das Problem der Auffindung von Punkten \((m,\tilde{m})\) auf der modularen Hyperbel \[ \mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\} \] mit \(\max\{ m, \tilde{m} \}\) so klein wie möglich, d.h. wir für gewisse \(\alpha\) beweisen nichttriviale Abschätzungen für \[ \min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \}. \] Der Beweis fußt auf neuen Abschätzungen für unvollständige Kloosterman-Summen entlang \(\mathscr{B}(\alpha,\beta)\), welche durch das Speisen einer Methode von Banks und Shparlinski mit neuen Abschätzungen für die periodische Autokorrelation der endlichen Folge \[ 0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)}, \] erhalten werden; (Hierbei bezeichnet \(\overline{m}\) die eindeutige natürliche Zahl \(m'\in[1,p)\) mit \(mm'\equiv 1\bmod p\) und wir schreiben \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\).) Für letzteres adaptieren wir Ideen von Kloosterman. Des weiteren untersuchen wir Mengen der Form \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). Wir zeigen, dass diese stets in einer gewöhnlichen Beatty-Menge \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) enthalten sind und geben zulässige Werte für \(\tilde{\alpha}\) und \(\tilde{\beta}\) an. Das Komplement \(\mathscr{C} = \mathscr{B}(\tilde{\alpha},\tilde{\beta}) \setminus \{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\) erweist sich als endliche Menge und wir bestimmen obere Schranken für das Supremum von \(\mathscr{C}\). Die Beweise gründen sich auf einfache Verteilungseigenschaften der Folge der Nachkommastellen \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), sofern \(\alpha_1^{-1}\alpha_2\) irrational ist, und berufen sich anderenfalls auf die Endlichkeit der Frobenius-Zahl einer geeignet gewählten Instanz des Frobeniusschen Münzproblems. Abschließend verallgemeinern wir die Definition von Beatty-Mengen auf imaginär-quadratische Zahlkörper in einer natürlichen Weise. Hat der fragliche Zahlkörper Klassenzahl \(1\), so können wir zeigen, dass diese Beatty-artigen Mengen unendlich viele Primelemente enthalten, sofern der zugehörige Parameter \(\alpha\) nicht im betrachteten Zahlkörper enthalten ist. Für den speziellen Zahlkörper \(\mathbb{Q}(i)\) erhalten wir unter Benutzung des Hurwitzschen Kettenbruch-Algorithmus eine Zahlkörper-Variante eines früheren Resultats von Steuding und dem Autor, welches ein Beatty-Analogon des klassischen Linnikschen Satzes über die kleinste Primzahl in einer arithmetischen Progression darstellt. Die erwähnten Resultate werden durch Zahlkörper-Varianten von klassischen Ergebnissen über die Verteilung von \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), erhalten; Diese wurden kürzlich von Baier mittels der Harmanschen Siebmethode für \(\mathbb{Q}(i)\) bewiesen. Wir übertragen die zugehörigen Überlegungen auf Zahlkörper mit Klassenzahl \(1\). N2 - For Beatty sets \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) with irrational \(\alpha>1\) and \(\beta\in\mathbb{R}\), and \(p\) prime and coprime to \(z\), we investigate the problem of detecting points \((m,\tilde{m})\) on the modular hyperbola \[ \mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\} \] with \(\max\{ m, \tilde{m} \}\) as small as possible, i.e., we obtain non-trivial estimates for \[ \min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \} \] for certain \(\alpha\). The proof rests on new estimates for incomplete Kloosterman sums along \(\mathscr{B}(\alpha,\beta)\) which are in turn obtained on supplying a method due to Banks and Shparlinski with a new estimate for the periodic autocorrelation of the finite sequence \[ 0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)}, \] (\(\overline{m}\) denoting the unique integer \(m'\in[1,p)\) with \(mm'\equiv 1\bmod p\) and \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\), the latter being obtained from adapting an argument due to Kloosterman. Furthermore, we investigate sets of the shape \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). We show that they are always contained in some ordinary Beatty set \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) where we give admissible choices for \(\tilde{\alpha}\) and \(\tilde{\beta}\). Their respective complement \(\mathscr{C}\) in this ordinary Beatty set is shown to be finite and bounds for the supremum of \(\mathscr{C}\) are provided. The proofs are based on basic distribution properties of the sequence of fractional parts \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), when \(\alpha_1^{-1}\alpha_2\) is irrational, and appeal to the finiteness of the Frobenius number associated with a suitably chosen instance of the Frobenius coin problem otherwise. Lastly, we generalise the definition of Beatty sets to imaginary quadratic number fields in a natural fashion. Assuming the number field in question to have class number \(1\), we are able to show that these Beatty-type sets contain infinitely many prime elements provided that the parameter corresponding to \(\alpha\) from above is not contained in the number field. When the number field is \(\mathbb{Q}(i)\), then, using the Hurwitz continued fraction expansion, we obtain a number field analogue of a previous result of Steuding and the author, who gave a Beatty set analogue of Linnik's famous theorem on the least prime number in an arithmetic progression. These results are obtained from number field analogues of classical results about the distribution of \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), which were worked out recently by Baier for \(\mathbb{Q}(i)\) using Harman's sieve method. We generalise these arguments to imaginary quadratic number fields with class number \(1\). KW - Zahlentheorie KW - Beatty sequence KW - Kloosterman sum KW - prime number KW - distribution modulo one KW - Diophantine approximation KW - imaginary quadratic field Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163303 SN - 978-3-95826-088-7 (Print) SN - 978-3-95826-089-4 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-088-7, 21,80 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER -