TY - JOUR A1 - Brückner, Tobias A1 - Fantuzzi, Felipe A1 - Stennett, Tom E. A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond JF - Angewandte Chemie International Edition N2 - The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P−P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B−B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy. KW - inorganic chemistry KW - radicals KW - boron KW - density functional calculations KW - oxidation KW - phosphorus heterocycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256451 VL - 60 IS - 24 ER - TY - JOUR A1 - Chen, Xing A1 - Meng, Guoyun A1 - Liao, Guanming A1 - Rauch, Florian A1 - He, Jiang A1 - Friedrich, Alexandra A1 - Marder, Todd B. A1 - Wang, Nan A1 - Chen, Pangkuan A1 - Wang, Suning A1 - Yin, Xiaodong T1 - Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication JF - Chemistry—A European Journal N2 - A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability. KW - boron heterocycles KW - photophysics KW - organic light-emitting diodes KW - luminescence KW - density functional calculations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256738 VL - 27 IS - 20 ER - TY - JOUR A1 - Franzsico, Marcos A. S. A1 - Fantuzzi, Felipe A1 - Cardozo, Thiago M. A1 - Esteves, Pierre M. A1 - Engels, Bernd A1 - Oliveira, Ricardo R. T1 - Taming the Antiferromagnetic Beast: Computational Design of Ultrashort Mn-Mn Bonds Stabilized by N-Heterocyclic Carbenes JF - Chemistry—A European Journal N2 - The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η\(^{6}\) coordination to the generation of Mn\(_{2}\) systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated. KW - metal-metal interactions KW - ab initio calculations KW - carbene ligands KW - density functional calculations KW - manganese Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256874 VL - 27 IS - 47 ER - TY - JOUR A1 - Schmidt, Paul A1 - Fantuzzi, Felipe A1 - Klopf, Jonas A1 - Schröder, Niklas B. A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger A1 - Engel, Volker A1 - Engels, Bernd T1 - Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics JF - Chemistry - A European Journal N2 - Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals. KW - chemistry KW - radicals KW - ab initio calculations KW - boron KW - carbene ligands KW - density functional calculations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256636 VL - 27 IS - 16 ER - TY - JOUR A1 - Schäfer, Natalie A1 - Bühler, Michael A1 - Heyer, Lisa A1 - Röhr, Merle I. S. A1 - Beuerle, Florian T1 - Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound JF - Chemistry—A European Journal N2 - A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2’-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and \(^{1}\)H, \(^{13}\)C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages. KW - boronate esters KW - hydrogen bonding KW - dynamic covalent chemistry KW - density functional calculations KW - cage compounds Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256762 VL - 27 IS - 19 ER -