TY - JOUR A1 - Arendt, Robert A1 - Reinhardt-Imjela, Christian A1 - Schulte, Achim A1 - Faulstich, Leona A1 - Ullmann, Tobias A1 - Beck, Lorenz A1 - Martinis, Sandro A1 - Johannes, Petrina A1 - Lengricht, Joachim T1 - Natural pans as an important surface water resource in the Cuvelai Basin — Metrics for storage volume calculations and identification of potential augmentation sites JF - Water N2 - Numerous ephemeral rivers and thousands of natural pans characterize the transboundary Iishana-System of the Cuvelai Basin between Namibia and Angola. After the rainy season, surface water stored in pans is often the only affordable water source for many people in rural areas. High inter- and intra-annual rainfall variations in this semiarid environment provoke years of extreme flood events and long periods of droughts. Thus, the issue of water availability is playing an increasingly important role in one of the most densely populated and fastest growing regions in southwestern Africa. Currently, there is no transnational approach to quantifying the potential storage and supply functions of the Iishana-System. To bridge these knowledge gaps and to increase the resilience of the local people's livelihood, suitable pans for expansion as intermediate storage were identified and their metrics determined. Therefore, a modified Blue Spot Analysis was performed, based on the high-resolution TanDEM-X digital elevation model. Further, surface area–volume ratio calculations were accomplished for finding suitable augmentation sites in a first step. The potential water storage volume of more than 190,000 pans was calculated at 1.9 km\(^3\). Over 2200 pans were identified for potential expansion to facilitate increased water supply and flood protection in the future. KW - Namibia KW - Angola KW - Oshana KW - flood KW - drought KW - water retention KW - storage volume KW - Blue Spot Analysis KW - TanDEM-X KW - pan Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223019 SN - 2073-4441 VL - 13 IS - 2 ER - TY - JOUR A1 - Ha, Tuyen V. A1 - Huth, Juliane A1 - Bachofer, Felix A1 - Kuenzer, Claudia T1 - A review of Earth observation-based drought studies in Southeast Asia JF - Remote Sensing N2 - Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region. KW - drought KW - drought impact KW - agricultural drought KW - hydrological drought KW - meteorological drought KW - earth observation KW - remote sensing KW - Southeast Asia KW - Mekong Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286258 SN - 2072-4292 VL - 14 IS - 15 ER - TY - JOUR A1 - Ibebuchi, Chibuike Chiedozie T1 - Revisiting the 1992 severe drought episode in South Africa: the role of El Niño in the anomalies of atmospheric circulation types in Africa south of the equator JF - Theoretical and Applied Climatology N2 - During strong El Niño events, below-average rainfall is expected in large parts of southern Africa. The 1992 El Niño season was associated with one of the worst drought episodes in large parts of South Africa. Using reanalysis data set from NCEP-NCAR, this study examined circulation types (CTs) in Africa south of the equator that are statistically related to the El Niño signal in the southwest Indian Ocean and the implication of this relationship during the 1992 drought episode in South Africa. A statistically significant correlation was found between the above-average Nino 3.4 index and a CT that features widespread cyclonic activity in the tropical southwest Indian Ocean, coupled with a weaker state of the south Indian Ocean high-pressure. During the analysis period, it was found that the El Niño signal enhanced the amplitude of the aforementioned CT. The impacts of the El Niño signal on CTs in southern Africa, which could have contributed to the 1992 severe drought episode in South Africa, were reflected in (i) robust decrease in the frequency of occurrence of the austral summer climatology pattern of atmospheric circulation that favors southeasterly moisture fluxes, advected by the South Indian Ocean high-pressure; (ii) modulation of easterly moisture fluxes, advected by the South Atlantic Ocean high-pressure, ridging south of South Africa; (iii) and enhancement of the amplitude of CTs that both enhances subsidence over South Africa, and associated with the dominance of westerlies across the Agulhas current. Under the ssp585 scenario, the analyzed climate models suggested that the impact of radiative heating on the CT significantly related to El Niño might result in an anomalous increase in surface pressure at the eastern parts of South Africa. KW - South Africa KW - drought KW - El Niño Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268569 SN - 1434-4483 VL - 146 IS - 1-2 ER - TY - JOUR A1 - Philipp, Marius A1 - Wegmann, Martin A1 - Kübert-Flock, Carina T1 - Quantifying the Response of German Forests to Drought Events via Satellite Imagery JF - Remote Sensing N2 - Forest systems provide crucial ecosystem functions to our environment, such as balancing carbon stocks and influencing the local, regional and global climate. A trend towards an increasing frequency of climate change induced extreme weather events, including drought, is hereby a major challenge for forest management. Within this context, the application of remote sensing data provides a powerful means for fast, operational and inexpensive investigations over large spatial scales and time. This study was dedicated to explore the potential of satellite data in combination with harmonic analyses for quantifying the vegetation response to drought events in German forests. The harmonic modelling method was compared with a z-score standardization approach and correlated against both, meteorological and topographical data. Optical satellite imagery from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) was used in combination with three commonly applied vegetation indices. Highest correlation scores based on the harmonic modelling technique were computed for the 6th harmonic degree. MODIS imagery in combination with the Normalized Difference Vegetation Index (NDVI) generated hereby best results for measuring spectral response to drought conditions. Strongest correlation between remote sensing data and meteorological measures were observed for soil moisture and the self-calibrated Palmer Drought Severity Index (scPDSI). Furthermore, forests regions over sandy soils with pine as the dominant tree type were identified to be particularly vulnerable to drought. In addition, topographical analyses suggested mitigated drought affects along hill slopes. While the proposed approaches provide valuable information about vegetation dynamics as a response to meteorological weather conditions, standardized in-situ measurements over larger spatial scales and related to drought quantification are required for further in-depth quality assessment of the used methods and data. KW - time-series KW - harmonic analysis KW - z-score KW - scPDSI KW - drought KW - vegetation response KW - forest ecosystems KW - Google Earth Engine Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239575 SN - 2072-4292 VL - 13 IS - 9 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Gessner, Ursula A1 - Asam, Sarah A1 - Kuenzer, Claudia A1 - Dech, Stefan T1 - The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics JF - Remote Sensing N2 - Central Europe experienced several droughts in the recent past, such as in the year 2018, which was characterized by extremely low rainfall rates and high temperatures, resulting in substantial agricultural yield losses. Time series of satellite earth observation data enable the characterization of past drought events over large temporal and spatial scales. Within this study, Moderate Resolution Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) (MOD13Q1) 250 m time series were investigated for the vegetation periods of 2000 to 2018. The spatial and temporal development of vegetation in 2018 was compared to other dry and hot years in Europe, like the drought year 2003. Temporal and spatial inter- and intra-annual patterns of EVI anomalies were analyzed for all of Germany and for its cropland, forest, and grassland areas individually. While vegetation development in spring 2018 was above average, the summer months of 2018 showed negative anomalies in a similar magnitude as in 2003, which was particularly apparent within grassland and cropland areas in Germany. In contrast, the year 2003 showed negative anomalies during the entire growing season. The spatial pattern of vegetation status in 2018 showed high regional variation, with north-eastern Germany mainly affected in June, north-western parts in July, and western Germany in August. The temporal pattern of satellite-derived EVI deviances within the study period 2000-2018 were in good agreement with crop yield statistics for Germany. The study shows that the EVI deviation of the summer months of 2018 were among the most extreme in the study period compared to other years. The spatial pattern and temporal development of vegetation condition between the drought years differ. KW - drought KW - time series KW - heat wave KW - agriculture KW - climate extremes KW - climate change KW - crop statistics KW - MODIS KW - Germany Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225165 VL - 11 IS - 15 ER - TY - JOUR A1 - Rokhafrouz, Mohammad A1 - Latifi, Hooman A1 - Abkar, Ali A. A1 - Wojciechowski, Tomasz A1 - Czechlowski, Mirosław A1 - Naieni, Ali Sadeghi A1 - Maghsoudi, Yasser A1 - Niedbała, Gniewko T1 - Simplified and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat JF - Agriculture N2 - Enhancing digital and precision agriculture is currently inevitable to overcome the economic and environmental challenges of the agriculture in the 21st century. The purpose of this study was to generate and compare management zones (MZ) based on the Sentinel-2 satellite data for variable rate application of mineral nitrogen in wheat production, calculated using different remote sensing (RS)-based models under varied soil, yield and crop data availability. Three models were applied, including (1) a modified “RS- and threshold-based clustering”, (2) a “hybrid-based, unsupervised clustering”, in which data from different sources were combined for MZ delineation, and (3) a “RS-based, unsupervised clustering”. Various data processing methods including machine learning were used in the model development. Statistical tests such as the Paired Sample T-test, Kruskal–Wallis H-test and Wilcoxon signed-rank test were applied to evaluate the final delineated MZ maps. Additionally, a procedure for improving models based on information about phenological phases and the occurrence of agricultural drought was implemented. The results showed that information on agronomy and climate enables improving and optimizing MZ delineation. The integration of prior knowledge on new climate conditions (drought) in image selection was tested for effective use of the models. Lack of this information led to the infeasibility of obtaining optimal results. Models that solely rely on remote sensing information are comparatively less expensive than hybrid models. Additionally, remote sensing-based models enable delineating MZ for fertilizer recommendations that are temporally closer to fertilization times. KW - precision agriculture KW - management zones KW - remote sensing KW - Sentinel-2 KW - clustering KW - winter wheat KW - drought KW - digital agriculture Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250033 SN - 2077-0472 VL - 11 IS - 11 ER - TY - JOUR A1 - Thonfeld, Frank A1 - Gessner, Ursula A1 - Holzwarth, Stefanie A1 - Kriese, Jennifer A1 - da Ponte, Emmanuel A1 - Huth, Juliane A1 - Kuenzer, Claudia T1 - A first assessment of canopy cover loss in Germany's forests after the 2018–2020 drought years JF - Remote Sensing N2 - Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time. KW - forest KW - canopy cover loss KW - drought KW - Sentinel-2 KW - Landsat-8 KW - disturbance index KW - time series Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255306 SN - 2072-4292 VL - 14 IS - 3 ER -