TY - JOUR A1 - Brunekreeft, Kim L. A1 - Strohm, Corinna A1 - Gooden, Marloes J. A1 - Rybczynska, Anna A. A1 - Nijman, Hans W. A1 - Grigoleit, Götz U. A1 - Helfrich, Wijnand A1 - Bremer, Edwin A1 - Siegmund, Daniela A1 - Wajant, Harald A1 - de Bruyn, Marco T1 - Targeted delivery of CD40L promotes restricted activation of antigen-presenting cells and induction of cancer cell death JF - Molecular Cancer N2 - Background: Stimulation of CD40 can augment anti-cancer T cell immune responses by triggering effective activation and maturation of antigen-presenting cells (APCs). Although CD40 agonists have clinical activity in humans, the associated systemic activation of the immune system triggers dose-limiting side-effects. Methods: To increase the tumor selectivity of CD40 agonist-based therapies, we developed an approach in which soluble trimeric CD40L (sCD40L) is genetically fused to tumor targeting antibody fragments, yielding scFv: CD40L fusion proteins. We hypothesized that scFv: CD40L fusion proteins would have reduced CD40 agonist activity similar to sCD40L but will be converted to a highly agonistic membrane CD40L-like form of CD40L upon anchoring to cell surface exposed antigen via the scFv domain. Results: Targeted delivery of CD40L to the carcinoma marker EpCAM on carcinoma cells induced dose-dependent paracrine maturation of DCs similar to 20-fold more effective than a non-targeted control scFv: CD40L fusion protein. Similarly, targeted delivery of CD40L to the B cell leukemia marker CD20 induced effective paracrine maturation of DCs. Of note, the CD20-selective delivery of CD40L also triggered loss of cell viability in certain B cell leukemic cell lines as a result of CD20-induced apoptosis. Conclusions: Targeted delivery of CD40L to cancer cells is a promising strategy that may help to trigger cancer-localized activation of CD40 and can be modified to exert additional anti-cancer activity via the targeting domain. KW - CD20 KW - EpCAM KW - CD40L KW - ScFv KW - targeting KW - dendritic cells KW - T-cells KW - monoclonal-antibodies KW - immune modulation KW - autologous tumor Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116682 SN - 1476-4598 VL - 13 IS - 85 ER - TY - JOUR A1 - Oehler, Beatrice A1 - Kloka, Jan A1 - Mohammadi, Milad A1 - Ben-Kraiem, Adel A1 - Rittner, Heike L. T1 - D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation JF - Molecular Pain N2 - Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation. KW - TRPA1 KW - capsaicin KW - reactive oxygen species KW - oxidised lipids KW - pain KW - targeting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236061 VL - 16 ER -