TY - THES A1 - Kißner, Katharina T1 - Manipulation of electronic properties in strongly correlated Cerium-based surface alloys T1 - Manipulation der elektronischen Eigenschaften in stark korrelierten Cer-basierten Oberflächenlegierungen N2 - Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK. The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200–270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Schönhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy. N2 - Photoelektronenspektroskopie eignet sich auf vielerlei Weise verschiedenste Aspekte der elektronischen Struktur stark korrelierter Elektronensysteme zu untersuchen. Die vorliegende Arbeit zeigt, wie gezielt Einfluss auf die Ausprägung starker Korrelation in Cer-basierten Oberflächenlegierungen genommen werden kann. Die Ausbildung des Kondo-Grundzustandes wird dabei durch eine Vielzahl von Parametern beeinfluss. Diese sind beispielsweise der metallische Bindungspartner, die Schichtdicke der Legierung und die dadurch bedingten Änderungen der Gitterstruktur sowie die Grenzen zu Substrat oder Vakuum. Durch Kontrolle dieser Parameter hat man die Möglichkeit, entscheidende Zustandsgrößen des Systems, wie die effektive Besetzung des f-Niveaus nf oder die Kondo-Temperatur TK, zu beeinflussen. Im Zentrum dieser Arbeit stehen dabei die intermetallischen Verbindungen CePt5/Pt(111) und CeAgx/Ag(111). Verschiedene Anregungsenergien bieten in der Photoemission Zugang zu den Merkmalen des Kondo-Effekts im Valenzband, aber auch in den Rumpfniveauspektren. Diese sind die Kondo-Resonanz und ihr Spin-Bahn-Partner nahe der Fermienergie sowie die Multiplettstruktur der Ce 3d Rumpfniveaus. Es werden beide Ansätze verfolgt um, für eine Reihe verschiedener Schichtdicken von CePt5/Pt(111), nf und TK zu bestimmen. Die Auswertung der Ce 3d-Spektren in Abhängigkeit der Probentemperatur ermöglicht zudem die Bestimmung von TK. Für dünne Schichten CePt5/Pt(111) ergibt sich TK≈200–270K, für dickere Schichten TK>280K. Diese Ergebnisse wurden durch Simulation der Spektren auf Basis des Gunnarsson-Schönhammer-Formalismus für Rumpfniveauspektren sowie durch Analyse der Kondo-Resonanz im Valenzband bestätigt. Durch Variation der Schichtdicke des CeAgx-Films, wurde auch im Materialsystem CeAgx/Ag(111) Einfluss auf die elektronische Struktur genommen. Zudem wird die Oberflächenlegierung mit dem schweren Element Bi versetzt, um das Zusammenspiel von Spin-Bahn-Kopplung und starker Korrelation zu untersuchen. KW - Korrelation KW - Cerlegierung KW - Photoelektronenspektroskopie KW - Röntgen-Photoelektronenspektroskopie KW - Ultraviolett-Photoelektronenspektroskopie KW - correlation KW - CePt5 KW - XPS KW - Gunnarsson Schönhammer KW - Kondo KW - Oberflächenlegierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273067 ER - TY - THES A1 - Reis, Felix T1 - Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide T1 - Realisierung und Spektroskopie des Quanten-Spin-Hall-Isolators Bismuten auf Siliziumkarbid N2 - Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel. N2 - Topologische Materie ist seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen im Jahr 2005 eines der spannendsten Forschungsgebiete der gegenwärtigen Festkörperphysik. Quanten-Spin-Hall-Isolatoren besitzen zwar eine verschwindende Volumen-Leitfähigkeit, aber symmetriegeschützte, helikale Randzustände, welche verlustfreien Ladungstransport erlauben. Der 2007 erfolgte experimentelle Nachweis dieses außergewöhnlichen Materiezustands führte, inspiriert von möglicherweise bahnbrechenden zukünftigen Anwendungen, zu einem sprunghaften Anstieg der Forschungsaktivitäten auf diesem Gebiet. Jedoch ist der Nutzen der derzeit verfügbaren Quanten-Spin-Hall-Materialien aufgrund ihrer vergleichsweise kleinen Volumen-Bandlücken auf kryogene Temperaturen beschränkt. In dieser Arbeit verfolgen wir einen neuen Weg, ein Quanten-Spin-Hall-Material mit einer großen Energielücke zu realisieren und wachsen Bismuten, ein Honigwabengitter aus Bi-Atomen, epitaktisch in einer \((\sqrt{3}\times\sqrt{3})\)-Rekonstruktion auf den Halbleiter SiC(0001). Dadurch nutzen wir sowohl die Honigwaben-Symmetrie, als auch die große Spin-Bahn-Wechselwirkung von Bi aus, welche in Kombination zu einer topologisch nicht-trivialen Bandlücke in der Größenordnung eines Elektronenvolts führen. Eine eingehende theoretische Analyse zeigt, dass die kovalente Bindung zwischen den Si- und Bi-Atomen nicht nur den Bi-Film stabilisiert, sondern entscheidend zur Ausprägung der Quanten-Spin-Hall-Phase beiträgt. Die Präparation unrekonstruierter SiC(0001)-Substrate hoher Güte ist der Grundstein für das Bismutenwachstum und erfordert die Anwendung einer aufwändigen Prozedur in hochreinem, trockenem H\(_2\)-Gas. Messungen mit Rastertunnelmikroskopie enthüllen die (\(1\times1\))-Periodizität der Oberfläche und glatte Terrassenebenen, welche für das Aufwachsen einzelner Bi-Lagen mittels eines dedizierten Molekularstrahlepitaxieprozesses geeignet sind. Die chemische Konfiguration der Filme und ihre Oxidation nach Kontakt mit Umgebungsluft wird mit Röntgenphotoelektronenspektroskopie untersucht. Winkelaufgelöste Photoelektronenspektroskopie legt die exzellente Übereinstimmung zwischen gemessener und berechneter Bandstruktur offen. Insbesondere zeigt sie die charakteristische Rashba-Spinaufspaltung der Valenzbänder am K-Punkt. Messungen mit Rastertunnelspektroskopie beinhalten ebenso Hinweise dieser Aufspaltung, und ermöglichen die Bestimmung der vollständigen Größe der Bandlücke von \(E_\text{gap}\approx0.8\,\text{eV}\). Konstantstrom-Aufnahmen und Karten der lokalen Zustandsdichte bestätigen die Ausbildung eines planaren Honigwabengitters, welches aufgrund unterschiedlicher, jedoch äquivalenter Nukleationszentren der (\(\sqrt{3}\times\sqrt{3}\))-Bi-Rekonstruktion in mehreren Domänen auftritt. Messungen der differenziellen Leitfähigkeit offenbaren, dass sich Bismuten-Randzustände an atomaren Stufen des SiC-Substrats ausbilden. Die gemessene, lokale Zustandsdichte und die gemäß der Energiedispersion des Randzustands in Dichtefunktionaltheorierechnungen erwartete Zustandsdichte stimmen - abgesehen von einem starken Abfall am Fermi-Niveau - überein. Mit temperatur- und energieabhängiger Tunnelspektroskopie wird gezeigt, dass die spektralen Eigenschaften dieser unterdrückten Leitfähigkeit erfolgreich im Rahmen der Tomonaga-Luttinger-Flüssigkeitstheorie beschrieben und wahrscheinlich durch verstärkte elektronische Korrelationen im Randkanal ausgelöst werden. KW - Zweidimensionales Material KW - Topologischer Isolator KW - Siliziumcarbid KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - Bismuthene KW - Silicon Carbide KW - scanning tunneling spectroscopy KW - photoelectron spectroscopy KW - molecular beam epitaxy KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - helical edge states KW - Luttinger liquid KW - honeycomb lattice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258250 ER -