TY - JOUR A1 - Salvador, Ellaine A1 - Köppl, Theresa A1 - Hörmann, Julia A1 - Schönhärl, Sebastian A1 - Bugaeva, Polina A1 - Kessler, Almuth F. A1 - Burek, Malgorzata A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) induce cell junction alterations in a human 3D in vitro model of the blood-brain barrier JF - Pharmaceutics N2 - In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies. KW - blood-brain barrier KW - Tumor-Treating Fields (TTFields) KW - CNS disorders KW - human brain microvascular endothelial cells (HBMVEC) KW - human cells KW - 3D in vitro model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304830 SN - 1999-4923 VL - 15 IS - 1 ER -