TY - THES A1 - Bangert, Philip T1 - Magnetic Attitude Control of Miniature Satellites and its Extension towards Orbit Control using an Electric Propulsion System T1 - Magnetische Lageregelung von Kleinstsatelliten und ihre Erweiterung zur Orbitregelung durch die Integration eines Elektrischen Antriebssystems N2 - The attitude and orbit control system of pico- and nano-satellites to date is one of the bottle necks for future scientific and commercial applications. A performance increase while keeping with the satellites’ restrictions will enable new space missions especially for the smallest of the CubeSat classes. This work addresses methods to measure and improve the satellite’s attitude pointing and orbit control performance based on advanced sensor data analysis and optimized on-board software concepts. These methods are applied to spaceborne satellites and future CubeSat missions to demonstrate their validity. An in-orbit calibration procedure for a typical CubeSat attitude sensor suite is developed and applied to the UWE-3 satellite in space. Subsequently, a method to estimate the attitude determination accuracy without the help of an external reference sensor is developed. Using this method, it is shown that the UWE-3 satellite achieves an in-orbit attitude determination accuracy of about 2°. An advanced data analysis of the attitude motion of a miniature satellite is used in order to estimate the main attitude disturbance torque in orbit. It is shown, that the magnetic disturbance is by far the most significant contribution for miniature satellites and a method to estimate the residual magnetic dipole moment of a satellite is developed. Its application to three CubeSats currently in orbit reveals that magnetic disturbances are a common issue for this class of satellites. The dipole moments measured are between 23.1mAm² and 137.2mAm². In order to autonomously estimate and counteract this disturbance in future missions an on-board magnetic dipole estimation algorithm is developed. The autonomous neutralization of such disturbance torques together with the simplification of attitude control for the satellite operator is the focus of a novel on-board attitude control software architecture. It incorporates disturbance torques acting on the satellite and automatically optimizes the control output. Its application is demonstrated in space on board of the UWE-3 satellite through various attitude control experiments of which the results are presented here. The integration of a miniaturized electric propulsion system will enable CubeSats to perform orbit control and, thus, open up new application scenarios. The in-orbit characterization, however, poses the problem of precisely measuring very low thrust levels in the order of µN. A method to measure this thrust based on the attitude dynamics of the satellite is developed and evaluated in simulation. It is shown, that the demonstrator mission UWE-4 will be able to measure these thrust levels with a high accuracy of 1% for thrust levels higher than 1µN. The orbit control capabilities of UWE-4 using its electric propulsion system are evaluated and a hybrid attitude control system making use of the satellite’s magnetorquers and the electric propulsion system is developed. It is based on the flexible attitude control architecture mentioned before and thrust vector pointing accuracies of better than 2° can be achieved. This results in a thrust delivery of more than 99% of the desired acceleration in the target direction. N2 - Eine präzise Lage- und Orbitregelung stellt derzeit eine der größten Limitierungen der Einsatzmöglichkeiten von Kleinstsatelliten dar. Um zukünftige wissenschaftliche und kommerzielle Missionen auch mit dieser Klasse von Satelliten erfolgreich durchführen zu können, ist eine Leistungssteigerung bei gleichbleibender Größe und Masse nötig. Die vorliegende Arbeit beschäftigt sich mit der Verbesserung des Lageregelungssystems, der Vermessung der Ausrichtgenauigkeit im Orbit und der Herstellung von Orbitregelungskapazitäten mithilfe von fortschrittlicher Sensordatenanalyse und optimierter on-board Software. Die hier entwickelten Methoden wurden an im Orbit befindlichen Satelliten demonstriert und deren Gültigkeit gezeigt. Neben einer Methode um die typische CubeSat Lageerkennungssensorik im Orbit zu kalibrieren wurde ein Verfahren entwickelt, um die Ausrichtgenauigkeit ohne die Zuhilfenahme eines externen Referenzsensors zu bestimmen. Beide Verfahren wurden mithilfe des UWE-3 Satelliten im Orbit demonstriert. Die genaue Analyse der Dynamik eines Satelliten gibt Aufschluss über die vorwiegend herrschenden Störmomente. Für Kleinstsatelliten im erdnahen Orbit kann gezeigt werden, dass Störungen aufgrund von statischen magnetischen Verunreinigungen bei Weitem am meisten Einfluss auf die Dynamik des Satelliten haben. In dieser Arbeit wird eine Methode präsentiert, die Daten der Lageerkennung nutzt um das magnetische Dipolmoment eines Kleinstsatelliten zu bestimmen. Mithilfe dieses Verfahrens konnte das Dipolmoment von drei unterschiedlichen CubeSats im Bereicht von 23.1mAm² bis 137.2mAm² präzise bestimmt werden. Um die Lageregelungsgenauigkeit zu steigern wird ein Software Konzept präsentiert, welches die bekannten Störungen der Satellitendynamik inherent und energieoptimiert kompensiert. Die Anwendung dieser on-board Software wurde mit UWE-3 in einer Vielzahl von Lageregelungsexperimenten im Orbit demonstriert. Die Integration von elektrischen Antrieben wird zukünftigen Kleinstsatelliten die Möglichkeit zur Orbitkontrolle geben und damit viele neue Anwendungsszenarien eröffnen. Die Qualifizierung und Vermessung der Triebwerke im Orbit stellt jedoch eine technische Schwierigkeit dar, da Schübe im Bereich von µN gemessen werden müssen. Ein Verfahren zur genauen Bestimmung des Schubs eines solchen Triebwerks basierend auf dessen Auswirkung auf die Satellitendynamik wurde entwickelt und wird hier mit Hilfe von Simulationen für die UWE-4 Mission demonstriert. Es wird gezeigt, dass mit Hilfe von UWE-4 der Schub der Triebwerke mit einer hohen Genauigkeit von 1% Fehler für Schübe größer 1µN gemessen werden können. Eine magnetische Lageregelung unter Zuhilfenahme der elektischen Antriebe stellt das Konzept der hybriden Lage- und Orbitregelung für UWE-4 dar. Die damit erzielbare Leistung hinsichtlich der Ausrichtgenauigkeit sowie Orbitregelung wurde untersucht und ist hier für verschiedene Szenarien gezeigt. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 19 KW - Satellit KW - Lageregelung KW - Plasmaantrieb KW - Attitude Determination and Control KW - Attitude Dynamics KW - Thrust Vector Control KW - Kleinsatellit Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177020 SN - 978-3-945459-28-7 (online) SN - 1868-7474 ER - TY - THES A1 - Kramer, Alexander T1 - Orbit control of a very small satellite using electric propulsion T1 - Orbitregelung eines Kleinstsatelliten mithilfe eines elektrischen Antriebssystems N2 - Miniaturized satellites on a nanosatellite scale below 10kg of total mass contribute most to the number of launched satellites into Low Earth Orbit today. This results from the potential to design, integrate and launch these space missions within months at very low costs. In the past decade, the reliability in the fields of system design, communication, and attitude control have matured to allow for competitive applications in Earth observation, communication services, and science missions. The capability of orbit control is an important next step in this development, enabling operators to adjust orbits according to current mission needs and small satellite formation flight, which promotes new measurements in various fields of space science. Moreover, this ability makes missions with altitudes above the ISS comply with planned regulations regarding collision avoidance maneuvering. This dissertation presents the successful implementation of orbit control capabilities on the pico-satellite class for the first time. This pioneering achievement is demonstrated on the 1U CubeSat UWE–4. A focus is on the integration and operation of an electric propulsion system on miniaturized satellites. Besides limitations in size, mass, and power of a pico-satellite, the choice of a suitable electric propulsion system was driven by electromagnetic cleanliness and the use as a combined attitude and orbit control system. Moreover, the integration of the propulsion system leaves the valuable space at the outer faces of the CubeSat structure unoccupied for future use by payloads. The used NanoFEEP propulsion system consists of four thruster heads, two neutralizers and two Power Processing Units (PPUs). The thrusters can be used continuously for 50 minutes per orbit after the liquefaction of the propellant by dedicated heaters. The power consumption of a PPU with one activated thruster, its heater and a neutralizer at emitter current levels of 30-60μA or thrust levels of 2.6-5.5μN, respectively, is in the range of 430-1050mW. Two thruster heads were activated within the scope of in-orbit experiments. The thrust direction was determined using a novel algorithm within 15.7° and 13.2° of the mounting direction. Despite limited controllability of the remaining thrusters, thrust vector pointing was achieved using the magnetic actuators of the Attitude and Orbit Control System. In mid 2020, several orbit control maneuvers changed the altitude of UWE–4, a first for pico-satellites. During the orbit lowering scenario with a duration of ten days, a single thruster head was activated in 78 orbits for 5:40 minutes per orbit. This resulted in a reduction of the orbit altitude by about 98.3m and applied a Delta v of 5.4cm/s to UWE–4. The same thruster was activated in another experiment during 44 orbits within five days for an average duration of 7:00 minutes per orbit. The altitude of UWE–4 was increased by about 81.2m and a Delta v of 4.4cm/s was applied. Additionally, a collision avoidance maneuver was executed in July 2020, which increased the distance of closest approach to the object by more than 5000m. N2 - Heutzutage werden überwiegend Kleinstsatelliten in niedrige Erdumlaufbahnen befördert, da dies schnell und sehr kostengünstig möglich ist. Von der Planung bis zum Raketenstart vergehen oft nur wenige Monate. Im vergangenen Jahrzehnt haben sich Kleinstsatelliten bezüglich Systemgestaltung, Kommunikation und Lageregelung dahingehend weiterentwickelt, dass diese in den Anwendungsbereichen Erdbeobachtung, Kommunikationsdienstleistungen und wissenschaftlichen Missionen mit herkömmlichen Satelliten konkurrieren können. Ein weiterer wichtiger Entwicklungsschritt für Kleinstsatelliten wäre die Möglichkeit der Orbitkontrolle. Diese würde die Betreiber befähigen, die Flugbahn der Satelliten entsprechend den aktuellen Zielen der Mission anzupassen und Formationsflug von Kleinstsatelliten durchzuführen, um neue wissenschaftliche Erkenntnisse in vielen Bereichen der Weltraumforschung zu fördern. Gleichzeitig würden Kleinstsatelliten den aktuell geplanten Vorschriften Rechnung tragen, nach denen Satelliten mit Flughöhen oberhalb der ISS manövrierfähig sein müssen, um Kollisionen zu vermeiden. Die vorliegende Dissertation präsentiert die erste erfolgreiche Orbitkontrolle auf einem Piko-Satelliten. Diese Pionierleistung wird auf dem 1U CubeSat UWE–4 demonstriert. Ein Schwerpunkt dieser Arbeit liegt dabei auf der Integration und dem Betrieb eines elektrischen Antriebssystems auf Kleinstsatelliten. Diese Integration des Antriebssystems hält den wertvollen Platz an den Außenflächen des CubeSats für zukünftige Nutzlasten frei und ermöglicht dessen Anwendung als Lage- und Orbitregelungsaktuator. Das verwendete NanoFEEP Antriebssystem beinhaltet vier Triebwerke, zwei Neutralisatoren und zwei Platinen zur Steuerung. Nach der Verflüssigung des Treibstoffs durch dedizierte Heizer können die Triebwerke pro Erdumrundung für 50 Minuten kontinuierlich genutzt werden. Der Stromverbrauch einer Steuerplatine mit einem aktiven Triebwerk, seinem Heizer und einem Neutralisator bei Emitterströmen von 30-60μA bzw. Schüben von 2.6-5.5μN liegt im Bereich von 430-1050mW. Im Rahmen von In- Orbit Experimenten wurden zwei Triebwerke aktiviert. Die Schubrichtungen der aktiven Triebwerke konnten mit einem neuartigen Algorithmus in einem Winkel von 15.7° bzw. 13.2° bezüglich ihrer Einbaurichtung bestimmt werden. Trotz mangelnder Steuerbarkeit der verbleibenden Triebwerke konnte eine Ausrichtung des Schubvektors unter Zuhilfenahme der magnetischen Aktuatoren des Lageregelungssystems erreicht werden. Mehrere Orbitregelungsexperimente zur Veränderung der Flughöhe konnten Mitte 2020 zum ersten Mal auf einem Piko-Satelliten gezeigt werden. Um die Flughöhe zu verringern, wurde ein Triebwerk über einen Zeitraum von zehn Tagen während 78 Orbits gefeuert, wobei dieses pro Erdumrundung für durchschnittlich 5:40 Minuten aktiviert wurde. Hierdurch wurde die Flughöhe von UWE–4 um 98m reduziert und seine Geschwindigkeit um ein Delta v von 7.2cm/s erhöht. In einem anderen Experiment wurde dasselbe Triebwerk während 44 Orbits in einem Zeitraum von fünf Tagen für durchschnittlich 7:00 Minuten aktiviert, wodurch die Flughöhe des Kleinstsatelliten um 74.2m angehoben und seine Geschwindigkeit um ein Delta v von 4.0cm/s verringert wurde. Zudem wurde ein Manöver zur Kollisionsvermeidung durchgeführt, das den Abstand zwischen UWE–4 und dem Objekt auf Kollisionskurs zum Zeitpunkt der kleinsten Annäherung um mehr als 5000m vergrößert hat. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 22 KW - Kleinsatellit KW - Plasmaantrieb KW - Flugbahn KW - Flughöhe KW - Kollisionsschutz KW - CubeSat Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241552 SN - 978-3-945459-34-8 (online) ER -