TY - THES A1 - Ehses, Philipp T1 - Development of new Acquisition Strategies for fast Parameter Quantification in Magnetic Resonance Imaging T1 - Entwicklung neuer Aufnahmeverfahren zur schnellen Parameterbestimmung in der Magnetresonanztomographie N2 - Magnetic resonance imaging (MRI) is a medical imaging method that involves no ionizing radiation and can be used non-invasively. Another important - if not the most important - reason for the widespread and increasing use of MRI in clinical practice is its interesting and highly flexible image contrast, especially of biological tissue. The main disadvantages of MRI, compared to other widespread imaging modalities like computed tomography (CT), are long measurement times and the directly resulting high costs. In the first part of this work, a new technique for accelerated MRI parameter mapping using a radial IR TrueFISP sequence is presented. IR TrueFISP is a very fast method for the simultaneous quantification of proton density, the longitudinal relaxation time T1, and the transverse relaxation time T2. Chapter 2 presents speed improvements to the original IR TrueFISP method. Using a radial view-sharing technique, it was possible to obtain a full set of relaxometry data in under 6 s per slice. Furthermore, chapter 3 presents the investigation and correction of two major sources of error of the IR TrueFISP method, namely magnetization transfer and imperfect slice profiles. In the second part of this work, a new MRI thermometry method is presented that can be used in MRI-safety investigations of medical implants, e.g. cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). One of the major safety risks associated with MRI examinations of pacemaker and ICD patients is RF induced heating of the pacing electrodes. The design of MRI-safe (or MRI-conditional) pacing electrodes requires elaborate testing. In a first step, many different electrode shapes, electrode positions and sequence parameters are tested in a gel phantom with its geometry and conductivity matched to a human body. The resulting temperature increase is typically observed using temperature probes that are placed at various positions in the gel phantom. An alternative to this local thermometry approach is to use MRI for the temperature measurement. Chapter 5 describes a new approach for MRI thermometry that allows MRI thermometry during RF heating caused by the MRI sequence itself. Specifically, a proton resonance frequency (PRF) shift MRI thermometry method was combined with an MR heating sequence. The method was validated in a gel phantom, with a copper wire serving as a simple model for a medical implant. N2 - Die Magnetresonanztomographie (MRT) zeichnet sich als medizinisches Bildgebungsverfahren dadurch aus, dass sie ohne ionisierende Strahlung auskommt und nicht-invasiv einsetzbar ist. Ein weiterer wichtiger - wenn nicht der wichtigste - Grund für die weite und wachsende Verbreitung der MRT in der klinischen Praxis ist ihr interessantes und hoch-flexibles Kontrastverhalten, und damit die gute Darstellbarkeit biologischen Gewebes. Die Hauptnachteile der MRT sind die, verglichen mit z.B. Computer-Tomographie (CT), langen Messzeiten und die damit direkt verbundenen hohen Untersuchungskosten. Der erste Teil dieser Arbeit beschreibt Verbesserungen der IR TrueFISP Methode zur MR-Parameterbestimmung. IR TrueFISP ist eine schnelle Methode zur gleichzeitigen Quantifizierung der Protonendichte, der longitudinalen Relaxationszeit T1, sowie der transversalen Relaxationszeit T2. In Kapitel 2 dieser Arbeit wird eine Methode zur Beschleunigung der IR TrueFISP Quantifizierung vorgestellt, die es erlaubt einen kompletten Relaxometrie-Datensatz in unter 6 s pro Schicht aufzunehmen. Weiterhin werden in Kapitel 3 zwei allgemeine Fehlerquellen der IR TrueFISP Methode untersucht und Korrekturverfahren vorgestellt. Im zweiten Teil dieser Arbeit werden neuartige MR-Thermometrie Methoden vorgestellt, die sich besonders zur Untersuchung der MR-Sicherheit von medizinischen Implanten, insbesondere Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren (ICDs), eignen. Momentan sind in den allermeisten Fällen MRT Untersuchungen an Herzschrittmacher- und ICD-Patienten aufgrund der damit verbundenen Risiken kontraindiziert. Das dabei am schwierigste in den Griff zu bekommende und damit größte Risiko ist die mögliche Schädigung des Myokards, hervorgerufen durch die von den geschalteten HF-Feldern induzierten Ströme in den Schrittmacherelektroden. Um eine MR-sichere Elektrode und/oder sichere Messprotokole zu entwickeln ist es notwendig viele verschiedene Elektroden, Elektrodenpositionen und Messparameter-Einstellungen in einem körperähnlichen Gel-Phantom untersucht. Die bei der jeweiligen Messung auftretenden Erhitzungen werden dabei meist mit Hilfe fiberoptischer Thermometer an verschiedenen Positionen im Gel gemessen. Eine Alternative ist die Aufnahme einer globalen Karte der Temperaturerhöhung mit Hilfe der MR-Thermometrie. In dieser Arbeit wird eine Messmethode vorgestellt, die MR-Thermometrie mit HF induziertem Heizen kombiniert. Diese Methode wurde an einem Kupferdraht im Gelphantom validiert und mit fiberoptisch gemessenen Temperaturanstiegen verglichen. KW - Kernspintomografie KW - Messprozess KW - Relaxometrie KW - Thermometrie KW - nicht-kartesische Bildgebung KW - Relaxometry KW - Thermometry KW - non-Cartesian imaging KW - Optimierung KW - MRI KW - NMR-Tomographie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72531 ER - TY - THES A1 - Fischer, André T1 - On the Application of Compressed Sensing to Magnetic Resonance Imaging T1 - Über die Anwendung von Compressed Sensing in der Magnetresonanztomographie N2 - This thesis investigated the potential of Compressed Sensing (CS) applied to Magnetic Resonance Imaging (MRI). CS is a novel image reconstruction method that emerged from the field of information theory. The framework of CS was first published in technical reports in 2004 by Candès and Donoho. Two years later, the theory of CS was published in a conference abstract and two papers. Candès and Donoho proved that it is possible, with overwhelming probability, to reconstruct a noise-free sparse signal from incomplete frequency samples (e.g., Fourier coefficients). Hereby, it is assumed a priori that the desired signal for reconstruction is sparse. A signal is considered “sparse“ when the number of non-zero elements is significantly smaller than the number of all elements. Sparsity is the most important foundation of CS. When an ideal noise-free signal with few non-zero elements is given, it should be understandably possible to obtain the relevant information from fewer Fourier coefficients than dictated by the Nyquist-Shannon criterion. The theory of CS is based on noise-free sparse signals. As soon as noise is introduced, no exact sparsity can be specified since all elements have signal intensities that are non-zero. However, with the addition of little or moderate noise, an approximate sparsity that can be exploited using the CS framework will still be given. The ability to reconstruct noisy undersampled sparse MRI data using CS has been extensively demonstrated. Although most MR datasets are not sparse in image space, they can be efficiently sparsified by a sparsifying transform. In this thesis, the data are either sparse in the image domain, after Discrete Gradient transformation, or after subtraction of a temporally averaged dataset from the data to be reconstructed (dynamic imaging). The aim of this thesis was to identify possible applications of CS to MRI. Two different algorithms were considered for reconstructing the undersampled sparse data with the CS concept. The Nonlinear Conjugate Gradient based technique with a relaxed data consistency constraint as suggested by Lustig et al. is termed Relaxed DC method. An alternative represents the Gradient or Steepest Descent algorithm with strict data consistency and is, therefore, termed the Strict DC method. Chapter 3 presents simulations illustrating which of these two reconstruction algorithms is best suited to recover undersampled sparse MR datasets. The results lead to the decision for the Strict DC method as reconstruction technique in this thesis. After these simulations, different applications and extensions of CS are demonstrated. Chapter 4 shows how CS benefits spectroscopic 19F imaging at 7 T, allowing a significant reduction of measurement times during in vivo experiments. Furthermore, it allows highly resolved spectroscopic 3D imaging in acceptable measurement times for in vivo applications. Chapter 5 introduces an extension of the Strict DC method called CS-CC (CS on Combined Coils), which allows efficient processing of sparse undersampled multi-coil data. It takes advantage of a concept named “Joint Sparsity“, which exploits the fact that all channels of a coil array detect the same sparse object weighted with the coil sensitivity profiles. The practical use of this new algorithm is demonstrated in dynamic radial cardiac imaging. Accurate reconstructions of cardiac motion in free breathing without ECG triggering were obtained for high undersampling factors. An Iterative GRAPPA algorithm is introduced in Chapter 6 that can recover undersampled data from arbitrary (Non-Cartesian) trajectories and works solely in the Cartesian plane. This characteristic makes the proposed Iterative GRAPPA computationally more efficient than SPIRiT. Iterative GRAPPA was developed in a preceding step to combine parallel imaging with CS. Optimal parameters for Iterative GRAPPA (e.g. number of iterations, GRAPPA kernel size) were determined in phantom experiments and verified by retrospectively undersampling and reconstructing a radial cardiac cine dataset. The synergistic combination of the coil-by-coil Strict DC CS method and Iterative GRAPPA called CS-GRAPPA is presented in Chapter 7. CS-GRAPPA allows accurate reconstruction of undersampled data from even higher acceleration factors than each individual method. It is a formulation equivalent to L1-SPIRiT but computationally more efficient. Additionally, a comparison with CS-CC is given. Interestingly, exploiting joint sparsity in CS-CC is slightly more efficient than the proposed CS-GRAPPA, a hybrid of parallel imaging and CS. The last chapter of this thesis concludes the findings presented in this dissertation. Future applications expected to benefit from CS are discussed and possible synergistic combinations with other existing MR methodologies for accelerated imaging are also contemplated. N2 - In der vorliegenden Arbeit wurde untersucht, welches Potential die Anwendung von Compressed Sensing (CS) in der Magnetresonanztomographie (MRT) hat. CS ist eine neue Bildrekonstruktionsmethode aus der Informationstheorie. Das Grundgerüst für CS wurde zuerst in zwei technischen Berichten von Candès und Donoho aus dem Jahr 2004 vorgestellt. Zwei Jahre später wurde die CS-Theorie in einem Konferenzbeitrag und zwei wissenschaftlichen Artikeln veröffentlicht. Candés und Donoho zeigten, dass es mit überwältigender Wahrscheinlichkeit möglich ist, ein rauschfreies sparses Signal aus unvollständig vorliegender Frequenzinformation zu rekonstruieren. Hierfür ist eine wichtige A-priori-Annahme, dass das gewünschte Signal, welches rekonstruiert werden soll, sparse sein soll. Man spricht von sparsen Signalen, falls die Anzahl der Elemente mit Intensität größer Null signifikant kleiner als die Anzahl aller Elemente ist. Die CS-Theorie basiert auf rauschfreien, sparsen Signalen. Sobald Rauschen auftritt, kann keine exakte Sparsity mehr bestimmt werden, da alle Elemente Signalintensitäten größer Null haben. Falls jedoch nur wenig oder moderates Rauschen hinzugefügt wird ist immer noch näherungsweise eine Sparsity gegeben, die mit Hilfe von CS ausgenutzt werden kann. Die meisten MR-Datensätze sind nicht-sparse im Bildraum, können allerdings durch eine sog. Sparsifizierungstransformation effektiv sparsifiziert werden. In der vorliegenden Arbeit sind die Daten entweder im Bildraum sparse, nach einer Diskreten-Gradienten-Transformation oder nachdem bei dynamischen Daten ein zeitlich gemittelter Datensatz von den zu rekonstruierenden Daten abgezogen worden ist. Das Ziel dieser Arbeit war es, mögliche Anwendungen für CS in der MRT zu identifizieren. Zwei unterschiedliche Algorithmen wurden untersucht, um unterabgetastete sparse Daten mit dem CS-Konzept zu rekonstruieren. Eine Technik, die auf einer Nichtlinearen Methode der Konjugierten Gradienten basiert und eine gelockerte Datenkonsistenzbedingung beinhaltet, wird als Relaxed DC-Methode bezeichnet. Eine Alternative stellt der Gradienten- oder Steilster-Abstieg-Algorithmus dar, der strikte Datenkonsistenz fordert und daher als Strict-DC-Methode bezeichnet wird. Kapitel 3 zeigt Simulationen, die darlegen, dass die Strict-DC-Methode am besten zur Datenrekonstruktion in dieser Arbeit geeignet ist. Kapitel 4 zeigt, in wie fern die spektroskopische 19F-Bildgebung bei 7 T von CS profitieren kann, indem CS eine signifikante Reduktion der Messzeiten bei in vivo Experimenten erlaubt. Desweiteren ermöglicht CS hochaufgelöste spektroskopische 3D-Bildgebung in akzeptablen Messzeiten für in vivo Anwendungen. Kapitel 5 führt eine Erweiterung der Strict-DC-Methode ein, die CS-CC genannt wird, welche eine effiziente Bearbeitung von sparsen unterabgetasteten Multi-Empfänger-Datensätzen erlaubt. Hierbei profitiert CS-CC von einem Konzept namens "Joint Sparsity", welches ausnutzt, dass alle Empfangskanäle eines Spulenarrays dasselbe sparse Objekt detektieren, jeweils gewichtet mit den entsprechenden Spulensensitivitätsprofilen. Der praktische Nutzen dieses neuen Algorithmus wird an einem dynamischen radialen Herzdatensatz verdeutlicht. Akkurate Rekonstruktionen der Herzbewegung in freier Atmung und ohne EKG-Trigger konnten bei hohen Unterabtastfaktoren erreicht werden. Ein Iterativer-GRAPPA-Algorithmus, der unterabgetastete Daten beliebiger (nicht-kartesischer) Trajektorien rekonstruieren kann und ausschließlich auf einem kartesischen Gitter arbeitet, wird in Kapitel 6 vorgestellt. Das vorgeschlagene Iterative GRAPPA ist vom Rechenaufwand her effizienter als SPIRiT und wurde als ein vorhergehender Schritt zur Kombination von Paralleler Bildgebung und Compressed Sensing entwickelt. Optimale Parameter für Iteratives GRAPPA (z.B. Anzahl an Iterationen, GRAPPA-Kern-Größe) wurden in Phantom-Experimenten bestimmt und mittels Rekonstruktionen an einem retrospektiv unterabgetasteten radialen Herzdatensatz verifiziert. Die synergetische Kombination der spulenweise angewendeten Strict-DC-Methode und Iterativem GRAPPA genannt CS-GRAPPA wird in Kapitel 7 präsentiert. CS-GRAPPA erlaubt akkurate Rekonstruktionen unterabgetasteter Daten von höheren Beschleunigungsfaktoren, als mit den jeweiligen Einzelmethoden möglich gewesen wäre. Die Formulierung ist äquivalent zu L1-SPIRiT, allerdings vom Rechenaufwand effizienter. Es wurde zusätzlich ein Vergleich zu CS-CC durchgeführt. Interessanterweise hat sich gezeigt, dass das Ausnutzen der Joint Sparsity in CS-CC etwas effizienter ist als das vorgeschlagene CS-GRAPPA, das ein Hybrid aus Compressed Sensing und Paralleler Bildgebung ist. Im abschließenden Kapitel dieser Dissertation werden die Ergebnisse zusammengefasst und Schlussfolgerungen daraus gezogen. Zukünftige Anwendungen werden diskutiert, die von CS profitieren und mögliche synergetische Kombinationen mit anderen existierenden MR-Methoden für beschleunigte Bildgebung werden angesprochen. KW - NMR-Tomographie KW - Rekonstruktion KW - NMR-Bildgebung KW - Compressed Sensing KW - Unterabtastung KW - Compressed Sensing KW - Undersampling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72496 ER - TY - THES A1 - Pillai, Deepu T1 - Differential effects of Pigment epithelium derived factor and epidermal growth factor on Ischemia-reperfusion injury in rats - a magnetic resonance imaging study at 3 tesla T1 - Unterschiedlichen Wirkungen von PEDF und EGF auf Ischämie-Reperfusionsschaden bei Ratten - Eine Kernspintomografie studie bei 3 Tesla N2 - Stroke, after myocardial infarction and cancer is the third most common cause of death worldwide and 1/6th of all human beings will suffer at least one stroke in their lives. Furthermore, it is the leading cause for adult disability with approximately one third of patients who survive for the next 6 months are dependent on others. Because of its huge socioeconomic burden absorbing 6% of all health care budgets and with the fact that life expectancy increases globally, one can assume that stroke is already, and will continue to be, the most challenging disease. Ischemic stroke accounts for approximately 80% of all strokes and results from a thrombotic or embolic occlusion of a major cerebral artery (most often the middle cerebral artery, MCA) or its branches Following acute ischemic stroke, the most worrisome outcome is the rapidly increasing intra-cranial pressure due to the formation of space-occupying vasogenic oedema which can have lethal consequences. Permeability changes at the Blood-Brain Barrier (BBB) usually accompanies the oedematous development and their time course can provide invaluable insight into the nature of the insult, activation of compensatory mechanisms followed by long term repair. Rodent models of focal cerebral ischemia have been developed and optimized to mimic human stroke conditions and serve as indispensable tools in the field of stroke research. The presented work constituting of three separate but complete works by themselves are sequential, where, the first part was dedicated to the establishment of non-invasive small animal imaging strategies on a 3 tesla clinical magnetic resonance scanner. This facilitated the longitudinal monitoring of pathological outcomes following stroke where identical animals can serve as its own control. Tissue relaxometric estimations were carried out initially to derive the transverse (T2), longitudinal (T1) and the transverse relaxation time due to magnetic susceptibility effects (T2*) at the cortical and striatal regions of the rodent brain. Statistically significant differences in T2*-values could be found between the cortex and striatal regions of the rodent brain. The derived tissue relaxation values were considered to modify the existing imaging protocols to facilitate the study of the rodent model of ischemic stroke. The modified sequence protocols adequately characterized all the clinically relevant sequels following acute ischemic stroke, like, the altered perfusion and diffusion characteristics. Subsequent to this, serial magnetic resonance imaging was performed to investigate the temporal and spatial relationship between the biphasic nature of BBB opening and, in parallel, the oedema formation after I/R injury in rats. T2-relaxometry for oedema assessment was performed at 1 h after ischemia, immediately following reperfusion, and at 4, 24 and 48 hours post reperfusion. Post-contrast T1-weighted imaging was performed at the last three time points to assess BBB integrity. The biphasic course of BBB opening with significant reduction in BBB permeability at 24 hours after reperfusion was associated with a progressive expansion of leaky BBB volume, accompanied by a peak ipsilateral oedema formation. At 48 hours, the reduction in T2-value indicated oedema resorption accompanied by a second phase of BBB opening. In addition, at 4 hours after reperfusion, oedema formation could also be detected at the contralateral striatum which persisted to varying degrees throughout the study, indicative of widespread effects of I/R injury. The observations of this study may indicate a dynamic temporal shift in the mechanisms responsible for biphasic BBB permeability changes, with non-linear relations to oedema formation. Two growth factor peptides namely pigment epithelium derived factor (PEDF) and epidermal growth factor (EGF) with widely different trophic properties were considered for their beneficial effects, if any, in the established rodent model of I/R injury and studied up to one week employing magnetic resonance imaging. Both the selected, trophic factors demonstrated significant neuroprotection as demonstrated by a reduction in infarct volume, even though PEDF was found to be the most potent one. PEDF also demonstrated significant attenuation of oedema formation in comparison to both the control and EGF groups, even though EGF could also demonstrate oedema suppression. In the present work, we noticed that interventions with macromolecule protein/peptides by itself could mediate remote oedema at distant sites even though the significance of such an observation is not clear at present. Susceptibility (T2*) weighted tissue relaxometric estimations were considered at the infarct region to detect any metabolic changes arising out of any neuroprotection and/or cellular proliferation / neurogenesis. PEDF group demonstrated a striking reduction of the T2*-values, which is indicative of an increased metabolic activity. Moreover, all the groups (Control, EGF and PEDF) demonstrated significantly elevated T2*-values at the contralateral striatum, which is indicative of widespread metabolic suppression usually associated with a variety of traumatic brain conditions. Moreover, as expected from the properties of PEDF, it demonstrated an extended BBB permeability suppression throughout the duration of the study. This study underlines the merits of considering non-invasive imaging strategies without which it was not possible to study the required parameters in a longitudinal fashion. All the observations are adequately supported by reasonably well defined mechanisms and needs to be further verified and confirmed by an immunohistochemical study. These results also need to be complemented by a functional study to evaluate the behavioural outcome of animals following these treatments. These studies are progressing at our laboratory and the results will be duly published afterwards. N2 - Schlaganfall ist nach Herzinfarkt und Krebs die dritthäufigste Todesursache weltweit und 1/6 aller Menschen erleiden mindestens einen Schlaganfall in ihrem Leben. Wichtiger ist jedoch, dass Schlaganfallerkrankungen ist die führende Ursache für dauerhafte Behinderungen darstellen. Ungefähr ein Drittel dieser Patienten, die die ersten 6 Monate überleben sind auf die Hilfe anderer angewiesen. Die enorme Wichtigkeit des Schlaganfalls begründet sich zudem dadurch, dass schon jetzt die sozioökonomischen Kosten 6% der gesamten Gesundheitausgaben betragen und die globale Lebenserwartung weiter steigen wird. Der ischämische Hirninfarkt ist der mit 80% vorherrschende Schlaganfalltyp und resultiert aus thrombotischen und embolischen Verschlüssen der großen hirnversorgenden Arterien und deren Ästen (insbesondere der A. cerbri media). Die wichtigste Komplikation mit hoher Mortalität nach einem ischämischen Schlaganfall ist Entwicklung eines raumfordernden vasogene Ödementwicklung. Änderungen der Permeabilität der Blut-Hirn Schranke (BHS) begleitet die Ödementwicklung und Analyse der zeitlichen BHS Permeabilität können wichtige Erkenntnisse über den natürlichen Verlauf eines Hirninfarkts und die Aktivierung kompensatorischer Mechanismen, die in Reparaturvorgänge münden, liefern. Verschiedene modelle des akuten ischämischen Schlaganfalls mit Nagetieren wurden entwickelt um die Schlaganfalltherapie des Menschen weiter zu entwickeln. Sie sind momentan unersetzliche Instrumente in der Schlaganfallforschung. Die hier vorgestellte Arbeitet setzt sich auch 3 abgeschlossenen sequentiellen Teilprojekten zusammen. Das erste Teilprojekt befasst mit der Etablierung von der nicht-invasiven Kleintierbildgebung auf einem klinischen 3 Tesla Kernspintomographen. Diese Arbeit bildet die Grundlage für das in vivo Monitoring der pathologischen Veränderungen nach Schlaganfall in einem identischen Versuchstier nachverfolgt werden kann und so die eigene Kontrolle darstellt. Gewebs relaxometrische Messungen wurden initial durchgeführt um die transverse (T2), longitudinal (T1) und transverse (T2*) Relaxationszeit (aufgrund der magnetischen Suszeptibilitätseffekte) in kortikalen und striatalen Hirnregionen der Nagetiere zu bestimmen. Statistisch signifikante Unterschiede in der T2*- Werte konnte zwischen der kortikalen und Striatalen Regionen des Gehirn von Nagetieren gefunden werden. Hierdurch konnten bestehende Messprotokolle vom Menschen auf die Nagetiere optimiert und für die Untersuchungen des Schlaganfalls genutzt werden. Diese Vorarbeiten erlauben klinisch relevante Veränderungen wie eine veränderte Diffusion und Perfusion nach ischämischen Schlaganfall zu verfolgen. Basierend auf diesen Vorarbeiten wurde die örtliche und zeitliche Charakterisierung der bi-phasischen BHS-Öffnung und der Ödementwicklung nach experimenteller I/R der Ratte mittels serieller Magnetresonanztomographie (MRT) untersucht. Hier diente die T2-Relaxometrie zur Ödemquantifizierung und wurde 1 Stunde nach Beginn der zerebralen Ischämie, unmittelbar nach Reperfusion und im Intervall von weiteren 4, 24 und 48 Stunden durchgeführt. Eine T1-gewichtete Sequenz wurde vor und nach Gabe von Kontrastmittel an den drei letztgenannten Zeitpunkten zeigte den bi-phasischen Verlauf der BHS-Öffnung 4 und 48 Stunden nach Reperfusion. Eine signifikante Reduktion der BHS Permeabilität 24 Stunden war zum einem mit einer Erhöhung des Gesamtvolumens der gestörten BHS und zum anderen mit Maximum der Ödementwicklung assoziiert. Darüber hinaus konnte 48 Stunden nach Reperfusion bereits eine Resorption des Ödems anhand der T2-Relaxometrie gemessen werden während die zweite Phase der bi-phasischen BHS-Öffnung auftrat. Zusätzlich trat 4 Stunden nach Reperfusion eine Ödembildung auch der nicht-ischämischen Striatum auf, welche in unterschiedlichem Maße über die Studiendauer persistierte. Dies spricht dafür, dass Ischämie und Reperfusion Effekte auf das gesamte Gehirn haben können. Zusammenfassend sprechen die Beobachtung dafür, dass der zeitlichen Entwicklung des Hirnödems verschiedene Mechanismen der erhöhten Blut-Hirn Schranken Permeabilität zu Grunde liegen. Zwei Wachstumsfaktoren, der, Pigment epithelium abstammende Wachstumsfaktor (PEDF) und der epidermale Wachstumsfaktor (EGF), mit deutlich unterschiedlichen trophischen Eigenschaften wurden auf ihre positiven Effekte im etablierten Tiermodel der zerebralen I/R hin untersucht. Dabei wurden serielle MRT Untersuchungen bis hin zu einer Woche genutzt. Beide Wachstumsfaktoren führten im Model zu einer signifikanten Neuroprotektion, die sich in einer Reduktion des Infarktvolumens gegenüber einer Kontrolle mit Kochsalz zeigte. PEDF allerdings hatte gegenüber EGF eine potentere Wirkung und zeigte darüber hinaus und noch deutlicher als EGF eine signifikante Verminderung der Ödembildung. Allerdings zeigte eine Behandlung mit diesen großmolekularen Proteinen zumindest nach 24 Stunden auch eine Neigung zur Ödembildung in vom Schlaganfall nicht betroffenen Hirnarealen, deren Signifikanz allerdings noch unklar ist. T2*- gewichtete Relaxationsmessungen können dazu genutzt werden, um metabolische Veränderungen, die aus neuroprotektiven Therapieansätzen bzw. zellulärer Proliferation bzw. Neurogenese entstehen, zu quantifizieren. Hier zeigten insbesondere mit PEDF behandelte Versuchstiere eine hochsignifikante Reduktion der T2*-Werte, welche als Hinweis auf eine erhöhte metabolische Aktivität gewertet werden können. Insgesamt zeigten alle Behandlungsgruppen (Kochsalzkontrollen, EGF und PEDF) behandelte Tiere signifikant erhöhte T2*-werte auf des kontralateralen Striatums, welche auf eine weitreichende metabolische Suppression hindeuten, wie sie normalerweise bei einer Reihe von traumatischen Hirnerkrankungen gefunden werden können. Ein weiterer Befund ist, wie erwartet, die ausgedehnte Verminderung der BHS-Durchgängigkeit durch PEDF über die gesamte Dauer der Untersuchung hinweg. Diese Studie unterstreicht den Nutzen nicht-invasiver Bildgebungsstrategien, ohne die die Untersuchung der benötigten Parameter in einem longitudinalen Design nicht möglich wäre. Ausblickend müssen diese gut mittels MRT charakterisierten Prozesse durch immunhistologische und funktionelle Untersuchungen gestützt und nachfolgend publiziert werden. KW - Schlaganfall KW - Ischemie KW - NMR-Tomographie KW - Epidermaler Wachstumsfaktor KW - MRI KW - MRI KW - Stroke KW - Ischemia KW - PEDF KW - EGF Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57341 ER -