TY - THES A1 - Mishra, Dushyant T1 - The content of olfactory memory in larval Drosophila T1 - Olfaktorisches Gedächtnis in der Drosophila Larve N2 - An animal depends heavily on its sense of smell and its ability to form olfactory associations as this is crucial for its survival. This thesis studies in two parts about such associative olfactory learning in larval Drosophila. The first part deals with different aspects of odour processing while the second part is concerned with aspects related to memory and learning. Chapter I.1 highlights how odour intensities could be integrated into the olfactory percept of larval Drosophila. I first describe the dose-effect curves of learnability across odour intensities for different odours and then choose odour intensities from these curves such that larvae are trained at intermediate odour intensity, but are tested for retention with either that trained intermediate odour intensity, or with respectively HIGHer or LOWer intensities. I observe a specificity of retention for the trained intensity for all the odours used. Further I compare these findings with the case of adult Drosophila and propose a circuit level model of how such intensity coding comes about. Such intensity specificity of learning adds to appreciate the richness in 'content' of olfactory memory traces, and to define the demands on computational models of olfaction and olfactory learning. Chapter I.2 provides a behaviour-based estimate of odour similarity using four different types of experiments to yield a combined, task-independent estimate of perceived difference between odour-pairs. Further comparison of these perceived differences to published measures of physico- chemical difference reveals a weak correlation. Notable exceptions to this correlation are 3-octanol and benzaldehyde. Chapter I.3 shows for two odours (3-octanol and 1-octene-3-ol) that perceptual differences between these odours can either be ignored after non-discriminative training (generalization), or accentuated by odour-specific reinforcement (discrimination). Anosmic Or83b1 mutants have lost these faculties, indicating that this adaptive adjustment is taking place downstream of Or83b expressing sensory neurons. Chapter II.1 of this thesis deals with food supplementation with dried roots of Rhodiola rosea. This dose-dependently improves odour- reward associative function in larval Drosophila. Supplementing fly food with commercially available tablets or extracts, however, does not have a 'cognitive enhancing' effect, potentially enabling us to differentiate between the effective substances in the root versus these preparations. Thus Drosophila as a genetically tractable study case should now allow accelerated analyses of the molecular mechanism(s) that underlie this 'cognitive enhancement' conveyed by Rhodiola rosea. Chapter II.2 describes the role of Synapsin, an evolutionarily conserved presynaptic phosphoprotein using a combined behavioural and genetic approach and asks where and how, this protein affects functions in associative plasticity of larval Drosophila. This study shows that a Synapsin-dependent memory trace can be pinpointed to the mushroom bodies, a 'cortical' brain region of the insects. On the molecular level, data in this study assign Synapsin as a behaviourally- relevant effector of the AC-cAMP-PKA cascade. N2 - Das Überleben von Tieren ist in hohem Maße abhängig von ihrer Fähigkeit zu riechen und olfaktorische Gedächtnisse zu bilden. Meine Arbeit besteht aus zwei Abschnitten, in denen ich solche Prozesse anhand von Drosophila Larven untersuche. Im ersten Abschnitt beschreibe ich verschiedene Aspekte der Geruchsprozessierung, der zweite Abschnitt betrifft Gedächtnis- und Lernprozesse. Kapitel I.1 handelt davon, wie Geruchsintensitäten in die olfaktorische Wahrnehmung von Drosophila-Larven integriert sein könnten. Zuerst beschreibe ich die Lernbarkeit verschiedener Duftstoffe abhängig von ihren Intensitäten. Anhand dieser Dosis-Wirkungs-Kurven wähle ich dann eine niedrige, eine mittlere, und eine hohe Duft-Intensität. Ich trainiere Larven mit der mittleren Duft-Intensität und teste sie entweder mit dieser mittleren Intensität, oder mit der höheren, oder mit der niedrigen Duft-Intensität. Ich beobachte, dass der Gedächtnisabruf mit der trainierten Intensität für alle verwendeten Duftstoffe am besten ist. Außerdem vergleiche ich diese Ergebnisse mit denen von adulten Fruchtfliegen und schlage ein Schaltkreis-Modell vor, das erklärt, wie eine solche Kodierung der Intensität zustande kommen kann. Eine solche Spezifität für Intensitäten beim Lernen erweitert die bisher bekannte Fülle des ‚Inhalts’ von olfaktorischen Gedächtnisspuren und die Anforderungen an Computermodelle über Riechen und Geruchslernen. In Kapitel I.2 untersuche ich Ähnlichkeitsbeziehungen zwischen Duftpaaren anhand der Wahrnehmung von Larven. Ich verwende dazu vier verschiedene Typen von Lernexperimenten. Durch Kombination der Ergebnisse dieser vier Experimente erhalte ich eine aufgabenunabhängige Abschätzung der vom Tier wahrgenommenen Ähnlichkeiten zwischen Paaren von Duftstoffen. Ein Vergleich dieser wahrgenommenen Ähnlichkeiten mit veröffentlichten Messungen von physikalischen und chemischen Ähnlichkeiten ergibt eine schwache Korrelation. Eine erwähnenswerte Ausnahme zu dieser Korrelation ist das Duftpaar 3-Octanol und Benzaldehyd. Kapitel I.3 zeigt für zwei Duftstoffe (3-Octanol und 1-Octen-3-ol), dass die wahrgenommene Ähnlichkeit zwischen diesen beiden Duftstoffen abhängig ist von der Art des Trainings. Wenn die Tiere nicht-diskriminativ trainiert werden, werden die Düfte vom Tier generalisiert, während diskriminatives Training die wahrgenommene Unterschiede zwischen den Düften erhöht. Anosmische Or83b1-Mutanten haben diese Fähigkeiten verloren, was darauf hindeutet, das diese adaptive Anpassung in Nervenzellen stattfindet, die den Or83b-exprimierenden sensorischen Neuronen nachgeschaltet sind. In Kapitel II.1 untersuche ich die Auswirkung von Zugabe getrockneter Wurzeln der Pflanze Rhodiola rosea zum Fliegenfutter. Ich finde heraus, dass Rhodiola rosea dosisabhängig die olfaktorische Konditionierung von Drosophila-Larven verbessert. Die Zugabe von kommerziell verfügbaren Tabletten oder Extrakten zum Fliegenfutter hat keinen positiven Effekt auf solche „kognitiven“ Fähigkeiten, was uns möglicherweise erlaubt, zwischen den effektiven Substanzen der Wurzel und diesen Präparaten zu differenzieren. Drosophila als genetisch manipulierbarer Modellorganismus sollte uns nun weiterführende Analysen der molekularen Mechanismen erlauben, die dieser „kognitiven Verbesserung“ durch Rhodiola rosea zugrunde liegen. Kapitel II.2 beschreibe ich die Funktion von Synapsin, einem evolutionär konservierten präsynaptischen Phosphoprotein. Ich verwende dazu einen kombinierten verhaltensbasierten und genetischen Ansatz. Untersucht wird, wo und wie dieses Protein assoziative Plastizität im Gehirn von Drosophila-Larven beeinflusst. Diese Studie zeigt, dass eine Synapsin-abhängige Gedächtnisspur im Pilzkörper, einer „kortikalen“ Gehirnregion der Insekten, lokalisiert werden kann. Auf der molekularen Ebene zeigen die Ergebnisse dieser Studie Synapsin als einen im Verhalten wichtigen Effektor der AC-cAMP-Kaskade. * Many thanks to M. Schlayer, T. Niewalda and T. Saumweber for their help in this translation. KW - Drosophila KW - Insektenlarve KW - Geruchssinn KW - Lernen KW - Drosophila melanogaster KW - Olfaktion KW - Neurogenetik KW - Speicher KW - Neurogenetics KW - Drosophila melanogaster KW - Olfaction KW - Learning KW - Memory KW - Reinforcement Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66316 ER - TY - THES A1 - Andlauer, Till Felix Malte T1 - Structural and Functional Diversity of Synapses in the Drosophila CNS T1 - Strukturelle und funktionale Diversität von Synapsen im ZNS von Drosophila N2 - Large-scale anatomical and functional analyses of the connectivity in both invertebrate and mammalian brains have gained intense attention in recent years. At the same time, the understanding of synapses on a molecular level still lacks behind. We have only begun to unravel the basic mechanisms of how the most important synaptic proteins regulate release and reception of neurotransmitter molecules, as well as changes of synaptic strength. Furthermore, little is known regarding the stoichiometry of presynaptic proteins at different synapses within an organism. An assessment of these characteristics would certainly promote our comprehension of the properties of different synapse types. Presynaptic proteins directly influence, for example, the probability of neurotransmitter release as well as mechanisms for short-term plasticity. We have examined the strength of expression of several presynaptic proteins at different synapse types in the central nervous system of Drosophila melanogaster using immunohistochemistry. Clear differences in the relative abundances of the proteins were obvious on different levels: variations in staining intensities appeared from the neuropil to the synaptic level. In order to quantify these differences, we have developed a ratiometric analysis of antibody stainings. By application of this ratiometric method, we could assign average ratios of presynaptic proteins to different synapse populations in two central relays of the olfactory pathway. In this manner, synapse types could be characterized by distinct fingerprints of presynaptic protein ratios. Subsequently, we used the method for the analysis of aberrant situations: we reduced levels of Bruchpilot, a major presynaptic protein, and ablated different synapse or cell types. Evoked changes of ratio fingerprints were proportional to the modifications we had induced in the system. Thus, such ratio signatures are well suited for the characterization of synapses. In order to contribute to our understanding of both the molecular composition and the function of synapses, we also characterized a novel synaptic protein. This protein, Drep-2, is a member of the Dff family of regulators of apoptosis. We generated drep-2 mutants, which did not show an obvious misregulation of apoptosis. By contrast, Drep-2 was found to be a neuronal protein, highly enriched for example at postsynaptic receptor fields of the input synapses of the major learning centre of insects, the mushroom bodies. Flies mutant for drep-2 were viable but lived shorter than wildtypes. Basic synaptic transmission at both peripheral and central synapses was in normal ranges. However, drep-2 mutants showed a number of deficiencies in adaptive behaviours: adult flies were locomotor hyperactive and hypersensitive towards ethanol-induced sedation. Moreover, the mutant animals were heavily impaired in associative learning. In aversive olfactory conditioning, drep-2 mutants formed neither short-term nor anaesthesia-sensitive memories. We could demonstrate that Drep-2 is required in mushroom body intrinsic neurons for normal olfactory learning. Furthermore, odour-evoked calcium transients in these neurons, a prerequisite for learning, were reduced in drep-2 mutants. The impairment of the mutants in olfactory learning could be fully rescued by pharmacological application of an agonist to metabotropic glutamate receptors (mGluRs). Quantitative mass spectrometry of Drep-2 complexes revealed that the protein is associated with a large number of translational repressors, among them the fragile X mental retardation protein FMRP. FMRP inhibits mGluR-mediated protein synthesis. Lack of this protein causes the fragile X syndrome, which constitutes the most frequent monogenic cause of autism. Examination of the performance of drep-2 mutants in courtship conditioning showed that the animals were deficient in both short- and long-term memory. Drep-2 mutants share these phenotypes with fmrp and mGluR mutants. Interestingly, drep-2; fmrp double mutants exhibited normal memory. Thus, we propose a model in which Drep-2 antagonizes FMRP in the regulation of mGluR-dependent protein synthesis. Our hypothesis is supported by the observation that impairments in synaptic plasticity can arise if mGluR signalling is imbalanced in either direction. We suggest that Drep-2 helps in establishing this balance. N2 - Umfangreiche anatomische und funktionelle Analysen der Konnektivität in Gehirnen von Wirbellosen und Säugern haben in den letzten Jahren große Aufmerksamkeit erhalten. Gleichzeitig ist unser Verständnis von Synapsen auf molekularer Ebene jedoch noch unvollständig. Wir haben erst damit begonnen, die grundlegenden Mechanismen zu entschlüsseln, nach denen die wichtigsten synaptischen Proteine die Ausschüttung und Erkennung von Neurotransmittern sowie Veränderungen der Stärke von Synapsen regulieren. Darüber hinaus ist auch über die Stöchiometrie präsynaptischer Proteine an verschiedenen Synapsen noch wenig bekannt. Eine Untersuchung dieser Eigenschaften würde zum besseren Verständnis der Merkmale verschiedener Synapsentypen beitragen. Präsynaptische Proteine beeinflussen zum Beispiel die Wahrscheinlichkeit der Ausschüttung von Neurotransmittern sowie Mechanismen zur Erzeugung von Kurzzeit-Plastizität. Wir haben die Expressionsstärke mehrerer präsynaptischer Proteine an verschiedenen Synapsentypen des Zentralnervensystems von Drosophila melanogaster mittels Immunhistochemie untersucht. Auf mehreren Ebenen waren deutliche Unterschiede in der relativen Anreicherung der Proteine offensichtlich: Färbungsintensitäten variierten von der Neuropilebene bis zum einzelnen Synapsentyp. Um diese Unterschiede zu quantifizieren, haben wir eine ratiometrische Analyse von Antikörperfärbungen entwickelt. Mit dieser Methode war es möglich, verschiedenen Synapsenpopulationen zweier Schaltstellen der Riechbahn durchschnittliche Ratios präsynaptischer Proteine zuzuweisen. Synapsentypen konnten durch eindeutige Fingerabdrücke präsynaptischer Proteinratios charakterisiert werden. So gelang es uns, die Auswirkungen einer Verringerung der Menge des wichtigen präsynaptischen Proteins Bruchpilot sowie der Entfernung verschiedener Synapsen- und Zelltypen zu untersuchen. Die in diesen Situationen hervorgerufenen Veränderungen der Ratio-Fingerabdrücke entsprachen den von uns im System erzeugten Abweichungen. Ratios präsynaptischer Proteine eignen sich daher gut dafür, Synapsentypen zu charakterisieren. Um unser Verständnis von sowohl der molekularen Zusammensetzung als auch der Funktion von Synapsen zu verbessern, haben wir außerdem das neue synaptische Protein Drep-2 charakterisiert. Drep-2 gehört zu den Dff-Proteinen, einer Familie von Apoptoseregulatoren. Wir haben drep-2 Mutanten erzeugt, bei denen Zelltod jedoch nicht fehlreguliert erschien. Stattdessen stellte sich Drep-2 als neuronales Protein heraus, angereichert zum Beispiel postsynaptisch an Eingangssynapsen der Pilzkörper, den Lernzentren von Insekten. Fliegen, denen das Gen drep-2 fehlte, waren lebensfähig, lebten jedoch kürzer. Die basale Übertragung an peripheren und zentralen Synapsen erschien unverändert. Die Mutanten zeigten jedoch Ausfälle in verschiedenen adaptiven Verhaltensweisen: Die Fliegen waren hyperaktiv in ihrer Bewegung sowie hypersensibel gegenüber Ethanol. Zudem zeigten die Tiere ein stark eingeschränktes assoziatives Lernvermögen. In aversivem Geruchslernen konnten die Mutanten weder Kurz- noch Mittelzeiterinnerungen bilden. Wir konnten nachweisen, dass Drep-2 für normales Geruchslernen in Pilzköper-intrinsischen Neuronen benötigt wird. Außerdem waren bei den Mutanten in diesen Neuronen durch Gerüche hervorgerufene Kalziumsignale, eine Voraussetzung für Lernen, reduziert. Die Lerneinschränkungen der Mutanten konnten durch Gabe eines pharmakologischen Agonisten metabotroper Glutamatrezeptoren (mGluR) vollständig behoben werden. Quantitative Massenspektrometrie von Drep-2-Komplexen zeigte, dass das Protein mit einer großen Anzahl von Translationsrepressoren assoziiert ist. Unter diesen befand sich das Fragile X Protein FMRP. FMRP inhibiert mGluR-vermittelte Proteinsynthese. Ein Mangel an FMRP erzeugt das Fragile X Syndrom, die häufigste monogenetische Ursache für Autismus. Bei Balzkonditionierung konnten drep-2 Mutanten weder Kurz- noch Langzeiterinnerungen speichern. Diesen Phänotyp haben sie mit fmrp- und mGluR-Mutanten gemeinsam. Drep-2; fmrp Doppelmutanten hatten jedoch ein normales Gedächtnis. Wir gehen daher davon aus, dass Drep-2 FMRP bei der Regulierung von mGluR-abhängiger Translation entgegenwirkt. Die Beobachtung, dass synaptische Plastizität gestört sein kann, wenn mGluR-Signalwege unausgewogen sind, stärkt diese Hypothese. Wir nehmen an, dass Drep-2 dazu beiträgt, von mGluR erzeugte Signale zu balancieren. KW - Taufliege KW - Neurobiologie KW - Zentralnervensystem KW - Synapse KW - Molekulare Marker KW - Aktive Zone KW - Lernen und Gedächtnis KW - Pilzkörper KW - Fragiles X Syndrom KW - Active zone KW - Learning and memory KW - Mushroom body KW - Conditioning KW - Metabotropic glutamate receptor KW - Neurogenetik KW - Drosophila Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85018 ER - TY - THES A1 - Tupak, Sara T1 - Modulators of Prefrontal Fear Network Function: An Integrative View T1 - Modulatoren präfrontaler Furchtnetzwerkfunktion: Ein integrativer Ansatz N2 - Regulating our immediate feelings, needs, and urges is a task that we are faced with every day in our lives. The effective regulation of our emotions enables us to adapt to society, to deal with our environment, and to achieve long‐term goals. Deficient emotion regulation, in contrast, is a common characteristic of many psychiatric and neurological conditions. Particularly anxiety disorders and subclinical states of increased anxiety are characterized by a range of behavioral, autonomic, and neural alterations impeding the efficient down‐regulation of acute fear. Established fear network models propose a downstream prefrontal‐amygdala circuit for the control of fear reactions but recent research has shown that there are a range of factors acting on this network. The specific prefrontal cortical networks involved in effective regulation and potential mediators and modulators are still a subject of ongoing research in both the animal and human model. The present research focused on the particular role of different prefrontal cortical regions during the processing of fear‐relevant stimuli in healthy subjects. It is based on four studies, three of them investigating a different potential modulator of prefrontal top‐down function and one directly challenging prefrontal regulatory processes. Summarizing the results of all four studies, it was shown that prefrontal functioning is linked to individual differences in state anxiety, autonomic flexibility, and genetic predisposition. The T risk allele of the neuropeptide S receptor gene, a recently suggested candidate gene for pathologically elevated anxiety, for instance, was associated with decreased prefrontal cortex activation to particularly fear‐relevant stimuli. Furthermore, the way of processing has been found to crucially determine if regulatory processes are engaged at all and it was shown that anxious individuals display generally reduced prefrontal activation but may engage in regulatory processes earlier than non‐anxious subjects. However, active manipulation of prefrontal functioning in healthy subjects did not lead to the typical behavioral and neural patterns observed in anxiety disorder patients suggesting that other subcortical or prefrontal structures can compensate for an activation loss in one specific region. Taken together, the current studies support prevailing theories of the central role of the prefrontal cortex for regulatory processes in response to fear‐eliciting stimuli but point out that there are a range of both individual differences and peculiarities in experimental design that impact on or may even mask potential effects in neuroimaging research on fear regulation. N2 - Tagtäglich sind wir gefordert, die Kontrolle über unsere unmittelbaren Gefühle und Bedürfnisse zu bewahren und diese zu regulieren. Die effektive Kontrolle unserer Emotionen ermöglicht es uns, uns unserer Umgebung und Gesellschaft anzupassen und langfristige Ziele zu erreichen. Defizitäre Emotionsregulation, im Gegensatz, charakterisiert eine Reihe von psychiatrischen und neurologischen Erkrankungen. Vor allem Angststörungen und subklinisch erhöhte Ängstlichkeit zeichnen sich durch eine Reihe von behavioralen, vegetativen und neuronalen Abweichungen aus, welche sich störend auf die effiziente Furchtregulation auswirken. Gängige Modelle des Furchtnetzwerks gehen davon aus, dass Furchtreaktionen durch eine top‐down Verschaltung von Präfrontalkortex und Amygdala reguliert werden. Neure Studien jedoch haben gezeigt, dass dieses Netzwerk durch eine Reihe von Faktoren beeinflusst wird. Die spezifischen präfrontalen kortikalen Netzwerke, die an einer effektiven Regulation beteiligt sind und deren potentielle Mediatoren und Modulatoren sind jedoch noch immer Gegenstand heutiger Forschung, sowohl im Tier‐, als auch im Menschenmodell. Der Fokus der vorliegenden Arbeit richtete sich speziell auf die Rolle verschiedener Regionen des Präfrontalkortex während der Verarbeitung furchtrelevanter Reize bei gesunden Probanden. Die Arbeit basiert auf vier Studien, von denen drei jeweils einen potentiellen Modulator präfrontaler top-down Funktion näher untersuchten, während jene regulatorischen Prozesse in einer weiteren Studie gezielt manipuliert wurden. Zusammenfassend konnte gezeigt werden, dass die Präfrontalfunktion mit individuellen Unterschieden in Ängstlichkeit, vegetativer Flexibilität und genetischer Prädisposition assoziiert ist. So wurde beispielsweise das T Risikoallel des Neuropeptid S Rezeptor Gens, ein erst kürzlich entdecktes Kandidatengen für pathologisch erhöhte Ängstlichkeit, speziell während der Darbietung furchtrelevanter Reize mit geringerer Präfrontalkortex Aktivierung in Verbindung gebracht. Des Weiteren konnte gezeigt werden, dass die Art der Verarbeitung im Wesentlichen bestimmt, ob überhaupt regulatorische Vorgänge in Gang gesetzt werden und dass insbesondere ängstliche Probanden eine allgemein verminderte präfrontale Aktivierung zeigen. Die Ergebnisse deuten jedoch auch darauf hin, dass diese regulatorischen Prozesse bei Ängstlichen möglicherweise früher aktiviert werden als bei weniger Ängstlichen. Das aktive Eingreifen in die Präfrontalfunktion bei Gesunden führte jedoch nicht zu den typischen neuronalen und Verhaltensmustern, wie sie bei Patienten mit Angststörungen beobachtet werden, was wiederum die Annahme nahe legt, dass andere subkortikale oder präfrontale Strukturen für eine Aktivitätsverringerung in einer bestimmten Region kompensieren können. Zusammenfassend kann gesagt werden, dass die vorliegenden Ergebnisse aktuelle Theorien einer zentralen Rolle des Präfrontalkortex in Bezug auf regulatorische Prozesse während der Konfrontation mit furchtrelevanten Reizen untermauern, jedoch auch zeigen, dass es eine Reihe an individuellen Charakteristika und Feinheiten im jeweiligen experimentellen Design gibt, die potentielle Effekte in Bildgebungsstudien zur Furchtregulation beeinflussen oder sogar maskieren können. KW - Neurogenetik KW - NIR-Spektroskopie KW - Furcht KW - Herzfrequenzvariabilität KW - ranskranielle magnetische Stimulation KW - Emotionsregulation KW - Präfrontaler Cortex KW - Theta Burst Stimulation KW - Neuropeptid S Rezeptor Gen KW - emotionale Interferenz KW - emotion regulation KW - prefrontal cortex KW - theta burst stimulation KW - neuropeptide S receptor gene KW - emotional interference KW - Angst KW - Neurowissenschaften Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85673 ER - TY - THES A1 - Rister, Jens T1 - Genetic dissection of peripheral pathways in the visual system of Drosophila T1 - Genetische Zerlegung peripherer Pfade im visuellen System von Drosophila N2 - Die visuellen Systeme von Vertebraten und Invertebraten weisen Ähnlichkeiten in den ersten Schritten visueller Informationsverarbeitung auf. Im menschlichen Gehirn werden zum Beispiel die Modalitäten Farbe, Form und Bewegung separat in parallelen neuronalen Pfaden verarbeitet. Dieses grundlegende Merkmal findet sich auch bei der Fliege Drosophila melanogaster, welche eine ähnliche Trennung in farbsensitive und (farbenblinde) bewegungssensitive Pfade aufweist, die durch zwei verschiedene Gruppen von Photorezeptoren (dem R1-6 und dem R7/8 System) determiniert werden. Fliegen haben ein hoch organisiertes visuelles System, welches durch die repetitive, retinotope Organisation von vier Neuropilen charakterisiert ist: Dies sind die Lamina, die Medulla, die Lobula und die Lobulaplatte. Jedes einzelne besteht aus Kolumnen, die denselben Satz von Nervenzellen enthalten. In der Lamina formen Axonbündel von sechs Photorezeptoren R1-6, die auf denselben Bildpunkt blicken, Säulen, die als Cartridges bezeichnet werden. Diese sind die funktionellen visuellen „sampling units“ und sind mit vier Typen von Interneuronen erster Ordnung assoziiert, die von R1-6 den gleichen Input erhalten: L1, L2, L3 und die Amakrinzellen (amc, mit ihrem postsynaptischen Partner T1). Diese stellen parallele Pfade dar, die auf anatomischer Ebene im Detail untersucht wurden; jedoch ist wenig über ihre funktionelle Rolle bei der Verarbeitung für das Verhalten relevanter Information bekannt, z.B. hinsichtlich der Blickstabilisierung, der visuellen Kurskontrolle oder der Fixation von Objekten. Die Verfügbarkeit einer Vielfalt von neurogenetischen Werkzeugen für die Struktur-Funktionsanalyse bei Drosophila ermöglicht es, erste Schritte in Richtung einer genetischen Zerlegung des visuellen Netzwerks zu unternehmen, das Bewegungs- und Positionssehen vermittelt. In diesem Zusammenhang erwies sich die Wahl des Effektors als entscheidend. Überraschenderweise wurde festgestellt, dass das clostridiale Tetanus-Neurotoxin die Photorezeptorsynapsen adulter Drosophila Fliegen nicht blockiert, hingegen irreversible Schäden bei Expression während deren Entwicklung verursacht. Aus diesem Grund wurde das dominant-negative shibire Allel shits1, welches sich als geeigneter erwies, zur Blockierung der Lamina Interneurone verwendet, um die Notwendigkeit der jeweiligen Pfade zu analysieren. Um festzustellen, ob letztere auch hinreichend für das gleiche Verhalten waren, wurde für die umgekehrte Strategie die Tatsache ausgenutzt, daß die Lamina Interneurone Histaminrezeptoren exprimieren, die vom ort Gen kodiert werden. Die spezifische Rettung der ort Funktion in definierten Pfaden im mutanten Hintergrund ermöglichte festzustellen, ob sie für eine bestimmte Funktion hinreichend waren. Diese neurogenetischen Methoden wurden mit der optomotorischen Reaktion und dem objektinduzierten Orientierungsverhalten als Verhaltensmaß kombiniert, um folgende Fragen innerhalb dieser Doktorarbeit zu beantworten: (a) Welche Pfade stellen einen Eingang in elementare Bewegungsdetektoren dar und sind notwendig und/oder hinreichend für die Detektion gerichteter Bewegung? (b) Gibt es Pfade, die spezifisch Reaktionen auf unidirektionale Bewegung vermitteln? (c) Welche Pfade sind notwendig und/oder hinreichend für das objektinduzierte Orientierungsverhalten? Einige grundlegende Eigenschaften des visuellen Netzwerks konnten dabei aufgedeckt werden: Die zwei zentralen Cartridge Pfade, die von den großen Monopolarzellen L1 und L2 repräsentiert werden, haben eine Schlüsselfunktion bei der Bewegungsdetektion. Über ein breites Spektrum von Reizbedingungen hinweg sind die beiden Subsysteme redundant und können Bewegung unabhängig voneinander verarbeiten. Um eine Beeinträchtigung des Systems festzustellen, wenn nur einer der beiden Pfade intakt ist, muß dieses an die Grenzen seiner Leistungsfähigkeit gebracht werden. Bei niedrigem Signal/Rauschverhältnis, d.h. bei geringem Musterkontrast oder geringer Hintergrundbeleuchtung, hat der L2 Pfad eine höhere Sensitivität. Bei mittlerem Musterkontrast sind beide Pfade auf die Verarbeitung unidirektionaler Bewegung in entgegengesetzten Reizrichtungen spezialisiert. Im Gegensatz dazu sind weder der L3, noch der amc/T1 Pfad notwendig oder hinreichend für die Detektion von Bewegungen. Während der erstere Positionsinformation für Orientierungsverhalten zu verarbeiten scheint, nimmt der letztere eine modulatorische Rolle bei mittlerem Kontrast ein. Es stellte sich heraus, daß das Orientierungsverhalten noch robuster als das Bewegungssehen ist und möglicherweise auf einem weniger komplizierten Mechanismus beruht, da dieser keinen nichtlinearen Vergleich der Signale benachbarter visueller „sampling units“ benötigt. Die Fixation von Objekten setzt nicht grundsätzlich das Bewegungssehen voraus, allerdings verbessert die Detektion von Bewegung die Fixation von Landmarken, im besonderen, wenn diese schmal sind oder einen geringen Kontrast aufweisen. N2 - Vertebrate and invertebrate visual systems exhibit similarities in early stages of visual processing. For instance, in the human brain, the modalities of color, form and motion are separately processed in parallel neuronal pathways. This basic property is also found in the fly Drosophila melanogaster which has a similar division in color- sensitive and (color blind) motion-sensitive pathways that are determined by two distinct subsets of photoreceptors (the R1-6 and the R7/8 system, respectively). Flies have a highly organized visual system that is characterized by its repetitive, retinotopic organization of four neuropils: the lamina, the medulla, the lobula and the lobula plate. Each of these consists of columns which contain the same set of neurons. In the lamina, axon bundles of six photoreceptors R1-6 that are directed towards the same point in space form columnar structures called cartridges. These are the visual sampling units and are associated with four types of first-order interneuron that receive common input from R1-6: L1, L2, L3 and the amacrine cells (amc, together with their postsynaptic partner T1). They constitute parallel pathways that have been studied in detail at the anatomical level. Little is known, however, about their functional role in processing behaviorally relevant information, e.g. for gaze stabilization, visual course control or the fixation of objects. The availability of a variety of neurogenetic tools for structure-function analysis in Drosophila allowed first steps into the genetic dissection of the neuronal circuitry mediating motion and position detection. In this respect, the choice of the effector turned out to be crucial. Surprisingly, it was found that the clostridial tetanus neurotoxin failed to block mature Drosophila photoreceptor synapses, but caused irreversible damage when expressed during their development. Therefore, the dominant-negative shibire allele shits1 which turned out to be better suited was used for blocking lamina interneurons and thereby analyzing the necessity of the respective pathways. To determine whether the latter were also sufficient for the same behavioral task, the inverse strategy was developed, based on the fact that lamina interneurons express histamine receptors encoded by the ort gene. The specific rescue of ort function in defined channels in an otherwise mutant background allowed studying their sufficiency in a given task. Combining these neurogenetic methods with the optomotor response and object induced orientation behavior as behavioral measures, the aim of the present thesis was to answer the following questions: (a) Which pathways feed into elementary motion detectors and which ones are necessary and/or sufficient for the detection of directional motion? (b) Do pathways exist which specifically mediate responses to unidirectional motion? (c) Which pathways are necessary and/or sufficient for object induced orientation behavior? Some basic properties of the visual circuitry were revealed: The two central cartridge pathways, represented by the large monopolar cells L1 and L2, are key players in motion detection. Under a broad range of stimulatory conditions, the two subsystems are redundant and are able to process motion independently of each other. To detect an impairment when only one of the pathways is intact, one has to drive the system to its operational limits. At low signal to noise ratios, i.e. at low pattern contrast or low background illumination, the L2 pathway has a higher sensitivity. At intermediate pattern contrast, both pathways are specialized in mediating responses to unidirectional motion of opposite stimulus direction. In contrast, neither the L3, nor the amc/T1 pathway is necessary or sufficient for motion detection. While the former may provide position information for orientation, the latter has a modulatory role at intermediate pattern contrast. Orientation behavior turned out to be even more robust than motion vision and may utilize a less sophisticated mechanism, as it does not require a nonlinear comparison of signals from neighboring visual sampling units. The position of objects is processed in several redundant pathways, involving both receptor subsystems. The fixation of objects does not generally require motion vision. However, motion detection improves the fixation of landmarks, especially when these are narrow or have a reduced contrast. KW - Genetik KW - Neurogenetik KW - Visuelles System KW - Bewegungssehen KW - Taufliege KW - Lamina KW - visual system KW - peripheral pathways KW - motion vision KW - elementary motion detector KW - optomotor response Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25980 ER - TY - THES A1 - Yarali, Ayse T1 - Aspects of predictive learning in the fruit fly T1 - Aspekte des assoziatives Lernens bei Taufliegen N2 - Past experience contributes to behavioural organization mainly via learning: Animals learn otherwise ordinary cues as predictors for biologically significant events. This thesis studies such predictive, associative learning, using the fruit fly Drosophila melanogaster. I ask two main questions, which complement each other: One deals with the processing of those cues that are to be learned as predictors for an important event; the other one deals with the processing of the important event itself, which is to be predicted. Do fruit flies learn about combinations of olfactory and visual cues? I probe larval as well as adult fruit flies for the learning about combinations of olfactory and visual cues, using a so called ‘biconditional discrimination’ task: During training, one odour is paired with reinforcement only in light, but not in darkness; the other odour in turn is reinforced only in darkness, but not in light. Thus, neither the odours nor the visual conditions alone predict reinforcement, only combinations of both do. I find no evidence that either larval or adult fruit flies were to solve such task, speaking against a cross-talk between olfactory and visual modalities. Previous studies however suggest such cross-talk. To reconcile these results, I suggest classifying different kinds of interaction between sensory modalities, according to their site along the sensory-motor continuum: I consider an interaction ‘truly’ cross-modal, if it is between the specific features of the stimuli. I consider an interaction ’amodal’ if it instead engages the behavioural tendencies or ‘values’ elicited by each stimulus. Such reasoning brings me to conclude that different behavioural tasks require different kinds of interaction between sensory modalities; whether a given kind of interaction will be found depends on the neuronal infrastructure, which is a function of the species and the developmental stage. Predictive learning of pain-relief in fruit flies Fruit flies build two opposing kinds of memory, based on an experience with electric shock: Those odours that precede shock during training are learned as predictors for punishment and are subsequently avoided; those odours that follow shock during training on the other hand are learned as signals for relief and are subsequently approached. I focus on such relief learning. I start with a detailed parametric analysis of relief learning, testing for reproducibility as well as effects of gender, repetition of training, odour identity, odour concentration and shock intensity. I also characterize how relief memories, once formed, decay. In addition, concerning the psychological mechanisms of relief learning, first, I show that relief learning establishes genuinely associative conditioned approach behaviour and second, I report that it is most likely not mediated by context associations. These results enable the following neurobiological analysis of relief learning; further, they will form in the future the basis for a mathematical model; finally, they will guide the researchers aiming at uncovering relief learning in other experimental systems. Next, I embark upon neurogenetic analysis of relief learning. First, I report that fruit flies mutant for the so called white gene build overall more ‘negative’ memories about an experience with electric shock. That is, in the white mutants, learning about the painful onset of shock is enhanced, whereas learning about the relieving offset of shock is diminished. As they are coherently affected, these two kinds of learning should be in a balance. The molecular mechanism of the effect of white on this balance remains unresolved. Finally, as a first step towards a neuronal circuit analysis of relief learning, I compare it to reward learning and punishment learning. I find that relief learning is distinct from both in terms of the requirement for biogenic amine signaling: Reward and punishment are respectively signalled by octopamine and dopamine, for relief learning, either of these seem dispensible. Further, I find no evidence for roles for two other biogenic amines, tyramine and serotonin in relief learning. Based on these findings I give directions for further research. N2 - Vergangene Ereignisse beeinflussen die Organisation des Verhaltens hauptsächlich durch das Lernen: Tiere lernen natürlich vorkommende neutrale Reize als Signal für biologisch relevante Ereignisse zu nutzen. Diese Dissertation befasst sich mit derartigen assoziativen Lernvorgängen bei der Taufliege Drosophila melanogaster. Ich stelle zwei, sich ergänzende, grundlegende Fragen: Die eine Frage beschäftigt sich mit der Verarbeitung von Reizen, die als Signal für ein wichtiges Ereignis erlernt werden. Die andere Frage behandelt die Verarbeitung des Ereignisses selbst. Lernen Taufliegen etwas über Kombinationen von olfaktorischen und visuellen Reizen? Sowohl bei larvalen, als auch bei adulten Taufliegen wird das Lernen von Kombinationen aus olfaktorischen und visuellen Stimuli untersucht. Ich verwende einen sogenannten „bikonditionalen Diskriminierungs-Versuchsaufbau“: Während des Trainings wird ein Duft nur im Licht und nicht im Dunkeln mit Reinforcement kombiniert, während ein anderer Duft nur im Dunkeln und nicht im Licht mit Reinforcement kombiniert wird. Somit signalisieren weder die Düfte, noch die visuellen Bedingungen allein das Reinforcement, sondern nur eine Kombination aus Beiden. Ich finde keine Beweise dafür, dass larvale oder adulte Taufliegen eine solche Aufgabe lösen können. Dies spricht gegen eine Interaktion zwischen olfaktorischen und visuellen Modalitäten. Allerdings weisen frühere Studien auf derartige Interaktionen hin. Um meine Ergebnisse mit den bekannten Studien in Einklang zu bringen, ordne ich die unterschiedlichen Interaktionen zwischen den sensorischen Modalitäten nach ihrer Lage entlang des sensorisch-motorischen Kontinuums: Ich bezeichnen eine Interaktion für „echt“ cross-modal, wenn sie zwischen den spezifischen Eigenschaften der beiden Reize stattfindet. Ich halte eine Interaktion für „amodal“, wenn sie zwischen den von den Reizen induzierten Verhaltenstendenzen und „Werten“ stattfindet. Aufgrund dieser Argumentation komme ich zu der Schlussfolgerung, dass unterschiedliche Verhaltensaufgaben unterschiedliche Interaktionen zwischen den sensorischen Modalitäten erfordern. Ob eine Art von Interaktion gefunden wird oder nicht hängt von der neuronalen Vernetzung ab, welche charakteristisch für Art und Entwicklungsstadium ist. Assoziatives Lernen von Schmerz-Erleichterung bei Taufliegen Taufliegen entwickeln zwei unterschiedliche Arten von Gedächtnissen basierend auf Erfahrung mit Elektro-Schock: Düfte, die während des Trainings dem Schock vorausgehen, werden als Bestrafungssignale gelernt und deshalb vermieden. Düfte, die während des Trainings auf den Schock folgen, werden als Erleichterungssignale gelernt und deshalb bevorzugt. Ich beschäftige mich mit der zweiten Art dieses assoziativen Lernens, das ich als „Erleichterungslernen“ bezeichne. Ich beginne mit einer detaillierten parametrischen Analyse des Erleichterungslernens. Die Reproduzierbarkeit, sowie die Einflüsse des Geschlechts, der Anzahl an Trainingswiederholungen, der Duftintensität, der Duftkonzentration und der Schockintensität werden geprüft. Ich teste, wie das Erleichterungsgedächtnis, nachdem es gebildet wurde, wieder gelöscht wird. Des Weiteren gehe ich zwei wichtigen Fragen zu den psychologischen Mechanismen des Erleichterungslernen nach: Zum einen zeige ich, dass das Erleichterungslernen echtes assoziativ konditioniertes Annäherungsverhalten etabliert. Zum anderen zeige ich, dass vorausgegangenes Kontext-Schock Training das folgende Erleichterungslernen nicht beeinflusst. Das Erleichterungslernen wird also nicht durch Kontextassoziation vermittelt. Diese Ergebnisse erlauben die folgende neurobiologische Analyse des Erleichterungslernens. Außerdem werden sie in Zukunft als Grundlage für ein mathematisches Modell des Erleichterungslernens dienen. Schließlich werden die Forscher/innen, die das Erleichterungslernen in anderen experimentellen Systemen untersuchen, von diesen parametrischen Erkenntnissen profitieren. In einer neurobiologischen Analyse des Erleichterungslernens zeige ich, dass der Verlust der Funktion des sogenannten white Gens die beiden unterschiedlichen Arten von Schock-Induziertem Lernen zusammenhängend beeinflusst: Das Bestrafungslernen wird verstärkt und das Erleichterungslernen wird abgeschwächt. Auf Grund dieses Ergebnisses schlagen ich vor, dass sich diese zwei Arten von Lernen in einem Gleichgewicht befinden sollen, welches vom white Gen beeinflusst wird. Die zugrunde liegenden molekularen Mechanismen eines solchen Gleichgewichts sind noch nicht bekannt. Schließlich vergleiche ich das Erleichterungslernen mit dem Belohnungslernen und dem Bestrafungslernen. Ich zeige, dass das Erleichterungslernen anders ist als beide: Bestrafung und Belohnung werden entsprechend von Dopamin und Octopamin vermittelt. Für das Erleichterungslernen sind beide diese biogenen Aminen unnötig. Ebenso finde ich beim Erleichterungslernen keinen Beleg für die Rolle von zwei weiteren Aminen: Tyramin und Serotonin. Aufgrund dieser Ergebnisse schlage ich vor weitere Forschungsrichtungen. KW - Lernen KW - Drosophila KW - Neurogenetik KW - Lernverhalten KW - olfaktorik KW - sehen KW - erleichterungslernen KW - associative learning KW - drosophila KW - neurogenetic analyses KW - behavioural analyses KW - relief Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28741 ER -