TY - THES A1 - Daumer, Volker T1 - Phase coherent transport phenomena in HgTe quantum well structures T1 - Phasenkohärente Transportphänomene in HgTe Quantentrogstrukturen N2 - Although spintronics has aroused increasing interest, much fundamental research has to be done. One important issue is the control over the electronic spin. Therefore, spin and phase coherent transport are very important phenomena. This thesis describes experiments with mercury based quantum well structures. This narrow gap material provides a very good template to study spin related effects. It exhibits large Zeeman spin splitting and Rashba spin-orbit splitting. The latter is at least four to five times larger than in III-V semiconductors. Initially a short review on the transport theory was presented. The main focus as on quantisation effects that are important to understand the related experiments. Thus, Shubnikov-de Haas and the quantum Hall effect have been analysed. Due to the first fabrication of nanostructures on Hg-based quantum well samples, the observation of ballistic transport effects could be expected. Hence, the Landauer-B¨uttiker theory has been introduced which gives the theoretical background to understand such effects. With respect to the main topic of this thesis, phase coherence has been introduced in detail. Experiments, where coherence effects could be observed, have been explained theoretically. Here, possible measurement setups have been discussed, e.g., a ring shaped structure to investigate the Aharonov-Bohm and related effects. Due to the fact, that all experiments, described in this thesis, were performed on Hg-based samples, the exceptional position of such samples among the “classical” semiconductors has been clarified. Hg1-xMnx Te quantum wells are type-III QWs in contrast to the type-I QWs formed by e.g., GaAs/AlGaAs heterostructures. With a well width of more than 6 nm and a manganese content of less than 7% they exhibit an inverted band alignment. Band structure calculations based on self consistent Hartree calculations have been presented. The common description of a diluted magnetic semiconductor with the Brillouin function has been introduced and the experiments to obtain the empiric parameters T0 and S0 have been presented. Rashba spin-orbit splitting and giant Zeeman splitting have been explained theoretically and the magnetic ordering of a spin glass as well as the relevant interactions therein have been discussed. The next chapter describes the first realisation of nanostructures on Hg-based heterostructures. Several material specific problems have been solved, but the unique features of this material system mentioned above justify the effort. Interesting new insight could be found and will be found with these structures. Onto a series of QW samples, cross-shaped structures with several lead widths have been patterned. With the non-local resistance measurement setup, evidence for quasiballistic transport was demonstrated in cross-shaped structures with lead widths down to 0.45 mm. The non-local bend resistance and a regime of rebound trajectories as well as the anomalous Hall effect could be identified. Monte-Carlo simulations of the classical electron trajectories have been performed. A good agreement with the experimental data has been achieved by taking a random scattering process into account. Encouraged by this success the technology has been improved and ring-shaped structures with radii down to 1 mm have been fabricated. Low temperature (below 100 mK), four terminal resistance measurements exhibit clear Aharonov-Bohm oscillations. The period of the oscillations agrees very well with a calculation that takes only the sample geometry into account. One goal using such a structure is the experimental prove of the spin-orbit Berry phase. Therefore an additional Shottky gate on top of the ring was needed. With this structure evidence for the Aharonov-Casher effect was observed. Here, a perpendicular applied electric field causes analogous oscillations as does the magnetic field in the AB effect. A subsequent change in the Rashba SO splitting due to several applied gate voltages while measuring the AB effect should reveal the SO Berry phase. Although initially evidence of a phase change was detected, a clear proof for the direct measurement of the SO Berry phase could not be found. In the future, with an advanced sample structure, e.g., with an additional Hall bar next to the ring, which permits a synchronous measurement of the Rashba splitting, it might be possible to measure the SO Berry phase directly. In manganese doped HgTe QWs two different effects simultaneously cause spin splitting: the giant Zeeman and the Rashba effect. By analysing the Shubnikovde Haas oscillations and the node positions of their beating pattern, it has been possible to separate these two effects. Whereas the Rashba effect can be identified by its dependence on the structure inversion asymmetry, varied by the applied gate voltage, the giant Zeeman splitting is extracted from its strong temperature dependence, because Rashba splitting is temperature independent. The analysis revealed, that the Rashba splitting is larger than or comparable to the giant Zeeman splitting even at moderately high magnetic fields. In an extraordinary HgMnTe QW sample, that exhibits the n= 1 quantum Hall plateau from less than 1 T up to 28 T, the anomalous Hall effect could be excluded. Intense studies on the temperature dependence of the QHE as well as band structure calculations have revealed this extraordinary behaviour to be an ordinary band structure effect of this system. In a series of mesoscopic structures on nonmagnetic and magnetic QWs, an investigation of the universal conductance uctuations have been carried out. In the N2 - Trotz des st¨andig steigenden Interesses an der Spintronik gibt es diesbez¨uglich noch viel an Grundlagenforschung zu leisten. Eine wichtige Aufgabe dabei ist es den Spin zu kontrollieren und gezielt zu beeinflussen. Aus diesem Grund ist es wichtig spin- und phasenkoh¨arente Transportph¨anomene zu untersuchen und zu verstehen. Die vorliegende Arbeit befasst sich mit Experimenten an Quantentrogstrukturen auf der Basis quecksilberhaltiger Materialien. Dieser schmall¨uckige Halbleiter ist ein ideales Versuchsobjekt zur Untersuchung von Effekten, die mit dem Spin zusammenh¨angen, denn er zeigt den riesigen Zeeman- Effekt sowie Rashba-Spin-Bahn-Aufspaltung. Letztere ist sogar vier- bis f¨unfmal so groß wie die in III-V Halbleitern. Zu Beginn dieser Arbeit wurde ein kurzer ¨ Uberblick ¨uber die Transportheorie gegeben. Dabei lag das zentrale Interesse auf Quantisierungseffekten, welche zum Verst¨andnis der nachfolgenden Experimente unabdingbar sind, insbesondere wurden der Shubnikov-de Haas und der Quanten-Hall-Effekt betrachtet. Da es im Rahmen dieser Arbeit erstmals gelungen ist, Nanostrukturen auf quecksilberhaltigen Quantentr¨ogen herzustellen, war es zu erwarten, dass ballistische Transporteffekte beobachtet werden k¨onnten. Daher wurde eine Einf¨uhrung in die Landauer- B¨uttiker-Theorie gegeben, mit welcher es m¨oglich ist solche ballistischen Effekte theoretisch zu beschreiben. Das Hauptaugenmerk der vorliegenden Arbeit liegt auf Untersuchungen zur Phasenkoh¨arenz. Deswegen wurde diese ausf¨uhrlicher eingef¨uhrt. Dabei wurde die Theorie der Experimente, bei denen man Phasenkoh¨arenz beobachten kann, dargestellt. Ebenso wurden m¨ogliche experimentelle Aufbauten diskutiert, wie zum Beispiel eine ringf¨ormige Struktur, an welcher man den Aharonov-Bohm, sowie damit verwandte Effekte untersuchen kann. Quecksilberhaltige Heterostrukturen nehmen neben den “klassischen” Halbleitern eine Sonderstellung ein. Diese wurde im dritten Kapitel gew¨urdigt. Im Gegensatz zu den Typ-I Quantentr¨ogen, z.B. gebildet aus einer GaAs/AlGaAs Heterostruktur, sind Quantentr¨oge aus Hg1-xMnxTe/Hg0:3Cd0:7Te vom Typ-III. Ist hierbei die Trogbreite gr¨oßer als 6 nm und der Mangangehalt geringer als 7%, so weisen diese Tr¨oge eine invertierte Bandstruktur auf. Hierzu wurden Bandstrukturberechnungen mittels selbstkonsistenter Hartree-Berechnungen dargestellt. Zur Beschreibung verd¨unnt magnetischer Halbleiter wurde die daf¨ur allgemein ¨ubliche Brillouin Funktion eingef¨uhrt. Die Experimente mit denen die dabei ben¨otigten empirischen Parameter T0 und S0 gewonnen wurden, wurden an dieser Stelle pr¨asentiert. Auch die Theorie der Rashba-Spin-Bahn-Aufspaltung sowie des riesigen Zeeman-Effekts wurden erkl¨art. Dar¨uberhinaus wurde der magnetische Ordnungszustand “Spinglas” eingef¨uhrt, sowie die wichtigsten Wechselwirkungen darin dargestellt. Im n¨achsten Kapitel wurde die erstmalige Realisierung von Nanostrukturen auf quecksilberhaltigen Heterostrukturen berichtet. Daf¨ur mussten materialspezifi- sche, technologische Probleme ¨uberwunden werden, aber die einzigartigen Eigenschaften dieses Materialsystems rechtfertigen den Aufwand. So konnten bereits und werden neue Einsichten gewonnen werden. Auf eine Serie von Quantentrogproben wurden Kreuzstrukturen mit unterschiedlichen Armdicken definiert. In diesen Strukturen konnte mit Hilfe der sogenannten Nichtlokalen Widerstandsmessung der Nachweis f¨ur quasiballistischen Transport erbracht werden. Der sogenannte Biegewiderstand, der Bereich der abprallenden Trajektorien sowie der anomale Hall-Effekt konnten identifiziert werden. Um diese Beobachtungen auch auf eine quantitative Beschreibung zur¨uckzuf¨uhren, wurden Monte- Carlo-Simulationen der klassischen Trajektorien der Elektronen durchgef¨uhrt. Durch die Einf¨uhrung eines zuf¨alligen Streuprozessess konnte eine hervorragende ¨ Ubereinstimmung mit den experimentellen Daten erzielt werden. Ermutigt durch diesen Erfolg, wurde die Technologie weiter verbessert. So konnten ringf¨ormige Strukturen mit Radii hinunter bis zu 1 mm hergestellt werden. Elektrische Vier-Punkt-Messungen bei niedrigsten Temperaturen (unter 100 mK) zeigen deutliche Aharonov-Bohm -Oszillationen. Die Periode dieser Oszillationen stimmt sehr gut mit der berechneten ¨uberein, die aus geometrischen ¨ Uberlegungen zur Probe gewonnen wurde. Ein Ziel f¨ur die Verwendung solcher ringf¨ormigen Strukturen ist der direkte experimentelle Nachweis der Spin-Bahn-Berry-Phase. Hierzu wird allerdings ein zus¨atzliches Shottky-Gatter auf der Oberseite des Rings ben¨otigt. Mit einer solchen Struktur konnte der Aharonov-Casher-Effekt nachgewiesen werden. Dabei verursacht ein senkrecht anliegendes elektrisches Feld analoge Oszillationen wie das Magnetfeld im Aharonov-Bohm-Effekt. Durch ein kontinuierliches ¨ Andern der Rashba Spin-Bahn-Aufspaltung, hervorgerufen durch die ¨ Anderung der anliegenden Gatter-Spannung, w¨ahrend man den Aharonov-Bohm-Effekt misst, sollte die Spin-Bahn-Berry-Phase offenbaren. Obwohl zun¨achst ein Hinweis auf einen Phasen¨ubergang gefunden werden konnte, war ein eindeutiger Nachweis f¨ur die direkte Messung der Berry-Phase nicht m¨oglich. Zuk¨unftige Messungen mit einer verbesserten Probenstruktur, z.B. einem zus¨atzlichen Hall-Streifen direkt neben dem Ring um gleichzeitig die Rashba- Aufspaltung messen zu k¨onnen, werdenm¨oglicherweise diesen direkten Nachweis erbringen. In mit Mangan dotierten HgTe Quantentr¨ogen gibt es zwei unterschiedliche Effekte, die eine Spin-Aufspaltung hervorrufen: Der riesige Zeeman-Effekt und der Rashba-Effekt. Durch die Analyse der Shubnikov-de Haas Oszillationen und der Knotenpositionen ihrer Schwebung, war es m¨oglich, diese zwei Effekte zu trennen. W¨ahrend der Rashba-Effekt durch seine Abh¨angigkeit von der Strukturinversionsasymmetrie, die durch Ver¨anderung der anliegenden Gatter-Spannung variiert werden kann, identifiziert werden kann, erkennt man die riesige Zeeman- Aufspaltung durch ihre Temperaturabh¨angigkeit, da der Rashba-Effekt temperaturunabh ¨angig ist. Diese Analyse konnte zeigen, dass die Rashba-Aufspaltung gr¨oßer als oder mindestens vergleichbar der riesigen Zeeman-Aufspaltung ist, und das sogar bei m¨aßig hohen Magnetfeldern. In einer außergew¨ohnlichen HgMnTe Quantentrogprobe, welche das n = 1 Quanten-Hall-Plateau von unter einem Tesla bis zu 28 Tesla aufweist, konnte der anomale Hall-Effekt als Ursache f¨ur dieses Verhalten ausgeschlossen werden. Intensive Untersuchungen der Temperaturabh¨angigkeit des Quanten-Hall-Effekts sowie Bandstrukturberechnungen konnten dieses außergew¨ohnliche Verhalten als einen gew¨ohnlichen Effekt der Bandstruktur in diesem System erkl¨aren. An einer Serie von mesoskopischen Strukturen auf nichtmagnetischen und magnetischen Quantentr¨ogen wurden universelle Leitwertfluktuationen untersucht. Im nichtmagnetischen Fall gehorchte die Temperaturabh¨angigkeit der Standardabweichung desWiderstands, die ein Maß f¨ur die Amplitude der Fluktuationen ist, einem Potenzgesetz (µ T KW - Quecksilbertellurid KW - Quantenwell KW - Elektronischer Transport KW - Schwingungsphase KW - Kohärenz KW - HgTe KW - Quantentrog KW - Ballistischer Transport KW - Phasenkohärenz KW - HgTe KW - quantum well KW - ballistic transport KW - phase coherence Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15538 ER - TY - THES A1 - Schramm, Claudia T1 - Ultraschneller Ladungstransfer und Energierelaxation an Grenzflächen T1 - Ultrafast charge transfer and energy relaxation at interfaces N2 - Ziel der vorliegenden Arbeit ist es, den ultraschnellen Transport und die Energierelaxation von Ladungsträgern an der Grenzfläche von heterogenen Systemen zu untersuchen. Dabei wird gezeigt, dass zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsspektroskopie eine gute Methode ist, um Einblick in das Relaxationsverhalten und den dynamischen Ladungsträgertransport in den untersuchten Systemen zu erhalten. Es werden Messungen an zwei unterschiedlichen Systemen vorgestellt: Silbernanoteilchen auf Graphit und ultradünne Silberfilme auf Silizium. Die Untersuchung von heterogenen Systemen erfordert einen selektiven Photoemissionsprozess, d.h. es muss möglich sein, Photoemission von den Nanoteilchen bzw. vom Silberfilm und vom Substrat zu trennen. Für Silbernanoteilchen auf Graphit kann dies erreicht werden, indem die Abfragewellenlänge auf die Resonanz des Plasmon-Polaritons abgestimmt wird. So erhält man dominant Photoemission von den Nanoteilchen, Photoemission vom Graphit kann dagegen vernachlässigt werden. Die transiente Elektronenverteilung in den Nanoteilchen kann aus der Form der Photoemissionsspektren bestimmt werden. Die transiente Verschiebung der Spektren gibt Aufschluss über die Auf- oder Entladung des Nanoteilchens. Dadurch wird es hier möglich, zeitaufgelöste Photoemissionsspektroskopie als ultraschnelle Sonde im Nanometerbereich zu verwenden. Zusammen mit einem Modell für die Relaxation und den Ladungstransfer ist es möglich, quantitative Ergebnisse für die Kopplung zwischen Nanoteilchen und Substrat zu erhalten. Das vorgestellte semiempirische Modell enthält dabei zusätzlich zu Termen für die Relaxation in Nanoteilchen und Substrat die Möglichkeit eines zeitabhängigen Ladungstransfers zwischen Teilchen und Substrat. Die Kopplung wird durch eine Tunnelbarriere beschrieben, deren starke Energieabhängigkeit der Transferwahrscheinlichkeit die experimentellen Ergebnisse gut wiedergibt. Die Stärke des Ladungstransfers und das zeitabhängige Verhalten sind dabei stark von den gewählten Parametern für die Tunnelbarriere abhängig. Insbesondere zeigt der Vergleich der Simulationsergebnisse mit dem Experiment, dass transienter Ladungstransfer ein wichtiger Effekt ist und die Kühlungsdynamik, die im Elektronengas der Nanoteilchen beobachtet wird, wesentlich beeinflusst. Auch im Fall der ultradünnen Silberfilme auf Silizium ist es durch gezielte Wahl der Wellenlängen möglich, die Photoelektronenausbeute selektiv dem Silberfilm oder dem Siliziumsubstrat zuzuordnen. Bei Anregung mit 3.1 eV Photonenenergie dominiert Photoemission aus dem Silberfilm, während es bei Anregung mit 4.65 eV möglich ist, Informationen über die Grenzschicht und das Siliziumsubstrat zu erhalten. Intensitätsabhängige Messungen zeigen den Einfluss der optischen Anregung auf den Verlauf der Schottkybarriere an der Metall-Halbleiter-Grenzschicht. Dieser Effekt ist als Oberflächen-Photospannung bekannt. Die Anregung mit 4.65 eV Photonenenergie bewirkt zusätzlich eine Sättigung langlebiger Zustände an der Metall-Halbleiter-Grenzfläche, was zu einer linearen Abhängigkeit der Photoemissionsausbeute von der Laserfluenz führt. Zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsmessungen machen es möglich, die Elektronendynamik an der Metall-Halbleiter-Grenzschicht und im Siliziumsubstrat zu untersuchen. Das Relaxationsverhalten der Ladungsträger zeigt dabei eine komplexe Dynamik, die auf die Anregung von Ladungsträgern in unterschiedlichen Bereichen zurückgeführt werden kann. Dabei dominiert für verschiedene Zwischenzustandsenergien die Dynamik entweder aus dem Film, der Grenzschicht oder dem Siliziumsubstrat, so dass das Relaxationsverhalten grob in drei unterschiedliche Energiebereiche eingeteilt werden kann. Im Silizium können aufgrund der Bandlücke mit 3.1 eV Photonenenergie Elektronen nur bis zu Zwischenzustandsenergien von EF + 2.0 eV angeregt werden. In der Tat stimmen die Relaxationszeiten, die man in diesem Bereich aus den zeitaufgelösten Messungen bestimmt, mit Werten von reinen Siliziumsubstraten überein. Für Zwischenzustandsenergien oberhalb von EF + 2.0 eV findet man überwiegend Anregung im Silberfilm. Die Relaxationszeiten für diese Energien entsprechen Werten von Silberfilmen auf einem isolierenden Substrat. Für sehr niedrige Zwischenzustandsenergien unterhalb von EF + 0.6 eV sind die Zustände wegen der vorliegenden experimentellen Bedingungen permanent besetzt. Der Anregepuls regt Elektronen aus diesen Zuständen an und führt daher in diesem Bereich zu einer Reduktion der Besetzung nach der Anregung mit Licht. Die Zeitkonstante für die Wiederbesetzung liegt im Bereich von mehreren 100 ps bis Nanosekunden. Solch lange Zeiten sind aus Rekombinationsprozessen an der Dipolschicht von Metall-Halbleiter-Grenzflächen bekannt. Zeitaufgelöste Mehrphotonen-Photoemissionsspektroskopie ist also sehr gut geeignet, das komplexe Relaxationsverhalten und den Ladungsträgertransfer an der Grenzfläche eines Schichtsystems zu untersuchen. N2 - The goal of the present work is the investigation of ultrafast transport and energy relaxation of excited carriers at interfaces. It is shown that time-resolved two-color multi-photon photoemission spectroscopy is a powerful method to get insight in relaxation dynamics and transient charge transfer. Measurements at two different systems were presented: Ag nanoparticles on graphite and ultraflat Ag films on Si(100). The investigation of a heterogeneous system requires a selective photoemission processes, i.e. the photoemission yield can be attributed to emission either from the nanoparticles/film or from the substrate. In measurements on Ag nanoparticles on graphite this can be achieved by tuning the probe wavelength to the plasmon polariton resonance. This results in predominate photoemission from the nanoparticles. Photoemission from the graphite can be neglected. The transient electron distribution can be extracted from the shape of the photoemission spectra. The transient shift of the spectra gives information on the charging and decharging of the nanoparticle. This makes it possible to use time-resolved photoemission spectroscopy as ultrafast probe on a nanometer scale. It is shown that the combination of the experimental results with a model yields quantitative results for the coupling of nanoparticle and substrate. Therefore, the presented semi-empirical model includes terms for transient charge transfer between particle and substrate in addition to terms for the relaxation dynamics in both the Ag nanoparticle and the graphite. The coupling is described by a tunnel barrier. The strong energy dependence of the transfer rate of such a barrier is needed to reproduce the experimental findings. The charge transfer dynamics depend strongly on the parameters used in the simulation. Especially, it is shown that transient charge transfer can not be neglected in our measurements and influences significantly the electron gas cooling dynamics in nanoparticles. On ultraflat Ag films on silicon selective photoemission can be achieved as well using adequate wavelengths. Excitation at 3.1 eV photon energy leads prominently to photoemission from the Ag film while at 4.65 eV excitation photoemission from the Si substrate or the interface is dominating. Intensity dependent measurements show that optical excitation influences the Schottky barrier at the metal-semiconductor-interface. This effect is known as surface photovoltage. In addition excitation at 4.65 eV leads to saturation of long lived interface states which results in a linear intensity dependence of the photoemission yield. Time-resolved two-color multi-photon photoemission spectroscopy on Ag films on Si gives insight in the electron dynamics at the metal-silicon interface. The relaxation dynamics show a complex behavior as excitation and relaxation in different parts of the system contribute to the signal. For different intermediate state energies the results can be attributed to either the Ag film, the Si substrate or the interface. Because of the band gap in silicon electrons can be excited in intermediate states up to EF + 2.0 eV. Indeed, the extracted effective relaxation times match values which are reported for uncovered Si substrates. At intermediate state energies above EF + 2.0 eV excitation takes place predominantly in the Ag film. Thus, the extracted effective relaxation times match values reported for 15 nm Ag films on a isolating substrate. At intermediate state energies below EF + 0.6 eV the states are permanently populated due to our experimental conditions. Thus, the pump excitation leads to a reduction of the population in these states. The repopulation has a time constant of several 100 ps up to nanoseconds. These time constant matches values for recombination processes at the dipol layer near a metal-semiconductor interface. Therefore, time-resolved multi-photon photoemission spectroscopy is a good method to investigate the complex relaxation behavior and charge transfer dynamics at the interface of a heterogeneous system. KW - Elektronischer Transport KW - Ultraschneller Prozess KW - Grenzfläche KW - Mehrphotonen-Spektroskopie KW - Elektronenzustand KW - Relaxation KW - Zweiphotonen-Photoemissionsspektroskopie KW - ultraschnell KW - Dynamik KW - heterogen KW - Transport KW - 2-photon-photoemission KW - ultrafast KW - dynamics KW - heterogeneous KW - transport Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18344 ER - TY - THES A1 - Dantscher, Sandra T1 - Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolekülkontakte unter Femtosekundenbeleuchtung T1 - Photocurrent spectroscopy on nanocontacts : tunnel and single molecule junctions under femtosecond illumination N2 - In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molekülkontakte eingesetzt. Zur Präparation der Tunnelkontakte standen zwei verschiedene Methoden zur Verfügung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die Möglichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu verändern, während die elektromigrierten Kontakte einen durch die Präparationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molekülen handelt es sich um Dithiole, die über eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensitäten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molekülkontakte) waren bis zu den auftretenden Maximalintensitäten von 10^7 Wcm^-2 stabil. Für alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und beträgt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zurückgeführt. Aus der relativen Größe des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter Überinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Größenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abhängt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erklärt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugehörige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekundären heißen Elektronen zum Strom ist. Auch bei den Molekülkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensität abhängt. Sie wird, ähnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erklären. Es ist anzunehmen, dass die Zunahme der Elektrodenlänge durch eine Umordnung auf atomarer Längenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht geklärt werden. Messungen, die den Elektrodenabstand um einige AA veränderten, lieferten weitere Indizien für die Komplexität der Molekülkontakte. So trat in manchen Fällen eine starke Korrelation zwischen Veränderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad für beide Signale hindeutet. Andererseits veränderten sich die beiden Ströme teilweise aber auch unabhängig voneinander, was nur durch mehrere parallele Transportkanäle im Kontakt erklärt werden kann. Zusätzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabhängige Ströme identifiziert. Sie sind in der gleichen Größenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, nämlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung führt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Größenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensitäten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelströme zeigen eine quadratische Intensitätsabhängigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabhängigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel für Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Krümmungsradius der Elektrodenspitze und Barrierenhöhe im Tunnelkontakt) war es möglich, die Spannungsabhängigkeit des lichtinduzierten Signals zu reproduzieren. N2 - The goal of the present work was the investigation of light induced charge transfer in nano contacts. In this context, tunnel and molecular contacts were employed. Tunnel contacts were prepared by two different methods: the mechanically controlled break-junction technique (MCBJ) and the electromigration of nano junctions. The MCBJs make it possible to vary the distance of the electrodes with sub-AA precision while the gap width of the electromigrated contacts has a fixed value which is determined by the preparation conditions. All molecules under investigation are dithiols that bind to the metallic electrode by a strong gold-sulfur bonding. In the experiments with the MCBJs the contacts were illuminated with ultrashort laser pulses at 800 nm and its second harmonic at 400 nm. Focussing on a spot radius of approximately 100 mum resulted in peak intensities of 10^7 Wcm^-2 for 800 nm and 10^6 Wcm^-2 for 400 nm. The MCBJs (tunnel and molecular junctions) were stable up to the maximum intensities of 10^7 Wcm^-2. For all investigated tunnel junctions a light induced current of up to 1 nA could be detected. This current is proportional to the respective average DC current through the junction (caused by an applied bias voltage) and typically amounts to some percent of it. The light induced current component was attributed to a thermal expansion of the electrodes due to photon absorption. From its relative magnitude and the work function of gold of 4.7 eV an expansion of each electrode of about 1 pm could be deduced. This is in good agreement with a simple thermal model for the freestanding electrodes. For some contacts an additional light induced current component in the range of some pA was identified. It is independent of the applied bias, but increases linearily with the laser power. A model that accounts for these findings is based on an asymmetric excitation in the two electrodes. Thus, a net current of excited electrons in one particular direction is generated. The corresponding measured quantum efficiency is approximately 1 indicating a significant contribution of secondary hot charge carriers to the current. Also, for the molecular contacts a light induced current component could be identified that depends linearily on the laser intensity. Like in the case of the tunnel contacts it is accounted for by the thermal expansion of the electrodes. However, it has not yet been possible to explain the precise mechanism. The increase of the electrode length is presumably compensated by a rearrangement on the atomic scale in the foremost part of the tip since this is the most ductile region of the whole contact. A detailed explanation however is still missing. Measurements where the electrode separation is varied by some AA provide further evidence for the complexity of the molecular junctions. In some cases a strong correlation between changes in the average DC current and the light induced signal could be observed. This suggests a single transport path for the two signals. On the other hand the signals sometimes changed independently of each other. This can only be explained by several parallel transport channels in the contact. In addition to the thermally caused light induced signal also a bias independent current could be identified, like in the case of tunnel junctions. These currents are in the same order of magnitude as in tunnel contacts and are therefore attributed to the same origin, i.e. an asymmetric excitation in the metal electrodes that causes a net current in one direction. For bias voltages up to +/- 1 V this current contribution is constant and in particular doesn't exhibit any spectral features. In the second part of the present work electromigrated tunnel contacts were investigated. These junctions exhibited a very large electrode separation of around 30 nm. Therefore, only the combination of a bias voltage of some volts and illumination with femtosecond laser pulses yielded a detectable current in the range of 100 fA. By improving the focussing with respect to the MCBJ experiments peak intensities up to 10^11 Wcm^-2 were reached. The light induced tunnel currents exhibit a quadratic intensity dependence that corresponds to a two-photon process. Moreover, the bias dependence is non-linear as well. For the description of the data a model of a multi-photon photo-field emission was used that is based on the Fowler-Nordheim equation of field emission. By a suitable choice of the model parameters (electrode separation, radius of curvature of the electrode tips and barrier height in the tunnel junction) it was possible to reproduce the bias dependence of the light-induced signal. KW - Tunnelkontakt KW - Nanostruktur KW - Elektronischer Transport KW - Lichtinduzierter Effekt KW - Ultrakurzer Lichtimpuls KW - photoinduzierter Transport KW - Tunnelkontakte KW - Molekülkontakte KW - molekulare Elektronik KW - Nanooptik KW - photoinduced transport KW - tunnel contacts KW - molecular contacts KW - molecular electronics KW - nano optics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18094 ER - TY - THES A1 - König, Markus T1 - Spin-related transport phenomena in HgTe-based quantum well structures T1 - Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen N2 - Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. N2 - Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten. KW - Spin-Bahn-Wechselwirkung KW - Quantenwell KW - Elektronischer Transport KW - Interferenz KW - Quanten-Hall-Effekt KW - Spin KW - Zwei-Sechs-Halbleiter KW - mesoskopischer Transport KW - Quanten-Spin-Hall-Effekt KW - Spin-Hall-Effekt KW - Aharonov-Casher-Effekt KW - mesoscopic transport KW - spin-orbit-interaction KW - narrow-gap semiconductor KW - quantum spin Hall effect KW - spin Hall effect KW - Aharonov-Casher phase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27301 ER - TY - THES A1 - Göpfert, Sebastian T1 - Einzel-Quantenpunkt-Speichertransistor: Experiment und Modellierung T1 - Single quantum dot memory transistor: Experiment and modeling N2 - In dieser Arbeit wurden Einzel-Quantenpunkt-Speichertransistoren im Experiment untersucht und wesentliche Ergebnisse durch Modellierung nachgebildet. Der Einzel-Quantenpunkt-Speichertransistor ist ein Bauelement, welches durch eine neuartige Verfahrensweise im Schichtaufbau und bei der Strukturierung realisiert wurde. Hierbei sind vor allem zwei Teilschritte hervorzuheben: Zum einen wurde das Speicherelement aus positionskontrolliert gewachsenen InAs Quantenpunkten gebildet. Zum anderen wurden durch eine spezielle Trockenätztechnik schmale Ätzstrukturen erzeugt, welche sehr präzise an der lateralen Position der Quantenpunkte ausgerichtet war. Durch diese Verfahrensweise war es somit möglich, Transistorstrukturen mit einzelnen Quantenpunkten an den charakteristischen Engstellen des Kanals zu realisieren. N2 - In this thesis single-quantum-dot memory-transistors have been studied in experiment and the experimental findings have been reproduced by modeling. The studied single-quantum-dot memory transistor is a device which has been realized by a novel process technique as regards layer composition and structuring. According to this there are two steps to be emphasized: First the memory element is based on site-controlled grown InAs quantum dots. Second, there has been used a unique dry etching technique to define narrow etched structures, which have been precisely aligned laterally with respect to the position of the quantum dots. Due to this method it was possible to realize transistor structures with single quantum dots centered in a quantum wire. KW - Quantenpunkt KW - Transistor KW - Speicherelement KW - single electron transport KW - single quantum dot KW - nanotechnology KW - Nanotechnologie KW - Elektronischer Transport KW - Single electron transfer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80600 ER - TY - THES A1 - Thienel, Cornelius T1 - Exploring the transport properties of the three-dimensional topological insulator material HgTe T1 - Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe N2 - In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. N2 - In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronischer Transport KW - 3D topological insulator KW - Festkörperphysik KW - Hochmagnetfeld KW - Tieftemperatur KW - Quanten-Hall-Effekt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122031 ER - TY - THES A1 - Rothe, Dietrich Gernot T1 - Spin Transport in Topological Insulators and Geometrical Spin Control T1 - Spintransport in topologischen Isolatoren und geometrische Spinkontrolle N2 - In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation. The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin. Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states. In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance, but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system. N2 - Manipulation und Transport von elektronischen Spins sind die wesentlichen Elemente, die für das Funktionieren einer zukünftigen Spin-basierten Elektronik implementiert werden müssen. Diese Arbeit befasst sich schwerpunktmäßig mit Halbleitersystemen, in denen diese Prinzipien mit hoher Zuverlässigkeit möglich sind. Dazu wurden sowohl numerische als auch analytische Berechnungsmethoden genutzt, letztere oft in der Form einfacher Modelle zur Interpretation der numerischen Ergebnisse. Das Halbleitersystem von HgTe/CdTe Quantentrögen, auch bekannt als zweidimensionaler topologischer Isolator, ist sowohl von fundamentalem wissenschaftlichen Interesse, da die topologisch nichttriviale Energiestruktur zu einem Schutz von Transporteigenschaften führt, als auch von angewandterem Interesse, da aus diesem Materialsystem Proben gefertigt werden können, die ballistischen Transport hoher Qualität zeigen, und da zudem die Rashba Spin-Bahn-Kopplung sowie die elektronische Dichte durch elektrische Steuerelektroden einstellbar sind. Wir erweitern das Bernevig-Hughes-Zhang Modell für zweidimensionale topologische Isolatoren, indem wir ein Vierbandmodell herleiten, das Rashba Spin-Bahn-Kopplungsterme enthält, die durch ein äußeres elektrisches Feld hervorgerufen werden, wenn dieses die Inversionssymmetrie des Quantentroges bricht. Der Transport von Spins in diesem System zeigt ein interessantes Wechselspiel zwischen Effekten der Rashba Spin-Bahn-Kopplung und Effekten der intrinsischen Dirac-artigen Spin-Bahn-Kopplung. Dabei dominiert die Rashba Spin-Bahn-Kopplung das Verhalten des Spin-Hall-Signals. Basierend auf der einstellbaren Rashba Spin-Bahn-Kopplung, schlagen wir einen spinselektiven Polarisator zur rein elektrischen Erzeugung und Detektion von Spinströmen vor. Das Funktionsprinzip ist vergleichbar mit demjenigen eines doppelbrechenden Kristalls. In der vorgeschlagenen Anordnung untersuchen wir die Spinpolarisation in verschieden Spinvektorkomponenten und zeigen die Realisierbarkeit von hoher Spinpolarisation in der Ebene. Da der Spin keine Erhaltungsgröße des Halbleitermodells ist, analysieren wir in einem ersten Schritt den Transport von der Erhaltungsgröße Helizität, und setzen die erzeugte Polarisation dann in Bezug zur Spinpolarisation. Des Weiteren analysieren wir thermoelektrischen Transport in einem System, das auch den Spin-Hall-Effekt zeigt. Aufgrund von Spin-Bahn-Kopplung kommt es beim Anlegen eines Temperaturgradienten zu einem transversalen Spinstrom, genannt Spin-Nernst-Effekt. Dieser ist über eine Mott-artige Beziehung mit dem Spin-Hall-Effekt verknüpft. Im metallischen Energiebereich können wir die Signale qualitativ anhand von einfachen analytischen Modellen verstehen. Im Energiebereich der elektronischen Bandlücke finden wir ein Spin-Nernst-Signal, das vom räumlichen Überlapp der Randzustände herrührt, die an gegenüberliegenden Kanten des Halbleitersystems lokalisiert sind. Im methodischen ersten Teil dieser Arbeit diskutieren wir zwei komplementäre Methoden zur Konstruktion von effektiven Halbleitermodellen, nämlich die Methode der Envelopefunktionen und die Methode der Invarianten. Außerdem präsentieren wir Elemente der elektronischen Transporttheorie, unter besonderer Beachtung von Spintransport. Wir diskutieren die Zusammenhänge zwischen dem adiabatischen Theorem in der Quantenmechanik einerseits, und semiklassischer Transporttheorie sowie der topologischen Klassifizierung von Phasen andererseits. Als weitere Anwendung des adiabatischen Theorems zeigen wir, wie universelle Kontrolle eines einzelnen Spins in einem Quantenpunkt aus Schwerlochzuständen experimentell realisiert werden kann, ohne dabei die Zeitumkehrsymmetrie zu brechen. Zu diesem Zweck führen wir ein elektrisches Quadrupolfeld ein, dessen Konfiguration als adiabatischer Kontrollparameter dient. Wir schlagen die experimentelle Realisierung des Quantenpunktes in einem QaAs/GaAlAs Quantentrogsystem vor. KW - Elektronischer Transport KW - Topologischer Isolator KW - Spintronik KW - topological insulators KW - topologische Isolatoren KW - mesoskopische Physik KW - mesoscopic physics KW - Halbleiterphysik KW - Thermoelektrizität KW - Quanteninformation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125628 ER - TY - THES A1 - Reinthaler, Rolf Walter T1 - Charge and Spin Transport in Topological Insulator Heterojunctions T1 - Ladungs- und Spintransport in Topologischen Isolator Heterojunctions N2 - Over the last decade, the field of topological insulators has become one of the most vivid areas in solid state physics. This novel class of materials is characterized by an insulating bulk gap, which, in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter make topological insulators promising candidates for applications in high fidelity spintronics and topological quantum computing. This thesis contributes to bringing these fascinating concepts to life by analyzing transport through heterostructures formed by two-dimensional topological insulators in contact with metals or superconductors. To this end, analytical and numerical calculations are employed. Especially, a generalized wave matching approach is used to describe the edge and bulk states in finite size tunneling junctions on the same footing. The numerical study of non-superconducting systems focuses on two-terminal metal/topological insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and the edge contributions are not additive. While for a long junction, the transport is determined purely by edge states, for a short junction, the conductance signal is built from both bulk and edge states in a ratio, which depends on the width of the sample. Further, short junctions show a non-monotonic conductance as a function of the sample length, which distinguishes the topologically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance of the topological insulator can be traced to the formation of an effectively propagating solution, which is robust against scalar disorder. The analysis of the competition of edge and bulk contributions in nanostructures is extended to transport through topological insulator/superconductor/topological insulator tunneling junctions. If the dimensions of the superconductor are small enough, its evanescent bulk modes can couple edge states at opposite sample borders, generating significant and tunable crossed Andreev reflection. In experiments, the latter process is normally disguised by simultaneous electron transmission. However, the helical edge states enforce a spatial separation of both competing processes for each Kramers’ partner, allowing to propose an all-electrical measurement of crossed Andreev reflection. Further, an analytical study of the hybrid system of helical edge states and conventional superconductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect. It is characterized by edge states. Both the helicity and the protection against scalar disorder of these edge states are unaffected by an in-plane magnetic field. At the same time its superconducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because the combination of helical edge states and superconductivity results in a giant g-factor. This is manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect is an effective generator and detector for spin currents. The research presented here deepens the understanding of the competition of bulk and edge transport in heterostructures based on topological insulators. Moreover it proposes feasible experiments to all-electrically measure crossed Andreev reflection and to test the spin polarization of helical edge states. N2 - Während des letzten Jahrzehnts haben sich topologische Isolatoren zu einem der aktivsten Bereiche der Festkörperphysik entwickelt. Diese neuartige Materialklasse charakterisiert sich durch einen isolierenden Volumenzustand, welcher, in zweidimensionalen und zeitumkehrinvarianten Systemen, durch helikale Randkanäle ergänzt wird. Diese Randkanäle machen topologische Isolatoren zu vielversprechenden Kandidaten für Anwendungen in den Bereichen der präzisen Spintronik und der topologischen Quantencomputer. Diese Doktorarbeit trägt zu der Realisierung dieser faszinierenden Konzepte bei, indem sie den Transport durch Heterostrukturen aus zweidimensionalen topologischen Isolatoren und Metallen oder Supraleitern analysiert. Hierfür werden analytische und numerische Methoden angewandt. Im Besonderen wird eine generalisierte Methode zum Wellenfunktionsanpassung an Grenzflächen verwendet, um Rand- und Volumenzustände simultan beschreiben zu können. Für die numerische Untersuchung nicht-supraleitender Systeme werden topologische Isolatoren als Tunnelbarrieren zwischen metallischen Kontakten betrachtet. Unerwarteterweise sind die Leitfähigkeiten von Rand- und Volumenzuständen nicht additiv. In langen und breiten Tunnelbarrieren wird der Transport ausschließlich durch die Randkanäle bestimmt. In kurzen Tunnelbarrieren hingegen ergibt sich die Leitfähigkeit aus einem Gemisch von Rand- und Volumenzuständen, welches von der Breite der Probe abhängt. In kurzen Tunnelbarrieren zeigt die Leitfähigkeit als Funktion der Probenlänge außerdem ein Maximum, welches das topologisch nicht-triviale Regime von dem topologisch trivialen Regime unterscheidet. Diese nicht-monotone Leitfähigkeit basiert auf der Formation einer effektiv propagierenden Mode, welche gegen Streuung durch nicht-magnetische Störstellen geschützt ist. Die Analyse des Zusammenspiels von Rand- und Volumenzuständen wird auf supraleitende Tunnelbarrieren zwischen zwei topologischen Isolatoren ausgeweitet. Wenn die räumlichen Dimensionen der Tunnelbarriere klein genug sind, können die entgegenlaufenden Randkanäle an gegenüberliegenden Rändern des topologischen Isolators durch die evaneszenten Volumenzustände des Supraleiters gekoppelt werden. Hierdurch kann eine nicht-lokale Andreev-Reflexion generiert und kontrolliert werden. In Experimenten wird dieser Prozess normalerweise durch simultane Elektrontransmission überlagert. Für einzelne Kramers-Partner jedoch forciert die Helizität der Randkanäle die räumliche Trennung beider Prozesse, was eine rein elektrische Messung der nicht-lokalen Andreev-Reflexion ermöglicht. Im Weiteren wird eine Studie über Hybridsysteme aus helikalen Randkanälen und konventionellen Supraleitern im magnetischen Feld, welches in der Ebene des zweidimensionalen topologischen Isolators liegt, präsentiert. Die Studie beschreibt den neuartigen supraleitenden Quanten-Spin-Hall-Effekt. Die hierfür charakteristischen Randkanäle bleiben selbst in endlichen Magnetfeldern helikal und gegen nicht-magnetische Störstellen geschützt. Gleichzeitig führt die Kombination von helikalen Randkanälen und Supraleitung zu einem riesigen Landé-Faktor, wodurch die supraleitende Bandlücke und der Magnetotransport dieser Systeme mit kleinen Magnetfeldern manipuliert werden kann. Dies kann durch einen nicht-monotonen supraleitenden Überschussstrom und ein aufgespaltenes Maximum der dI/dV -Charakteristik als Funktion des Magnetfeldes gemessen werden. In der Folge stellt der supraleitende Quanten-Spin-Hall-Effekt einen effektiven Generator und Detektor für Spinströme dar. Die hier präsentierte Forschung vertieft das Verständnis des Zusammenspiels von Rand- und Volumentransport in Heterostrukturen aus toplogischen Isolatoren. Außerdem werden realisierbare Experimente beschrieben, mit welchen die nicht-lokale Andreev-Reflexion rein elektrisch gemessen und die Spinpolarisierung der helikalen Randkanäle getestet werden können. KW - Topologischer Isolator KW - NSN-junctions KW - NSN-Grenzfächen KW - Spintronik KW - Elektronischer Transport KW - Crossed Andreev Reflection KW - Topological edge states KW - Crossed Andreev Refexion KW - Topologische Randkanäle KW - Supraleiter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135611 ER - TY - THES A1 - Geißler, Florian T1 - Transport properties of helical Luttinger liquids T1 - Transporteigenschaften von helikalen Luttinger Flüssigkeiten N2 - The prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensional edge channels are helical in nature, meaning that there is a locking of the spin orientation of an electron and its direction of motion. Due to the symmetry of time-reversal, elastic backscattering off interspersed impurities is suppressed in such a helical system, and transport is approximately ballistic. This allows in principle for the realization of novel energy-efficient devices, ``spintronic`` applications, or the formation of exotic bound states with non-Abelian statistics, which could be used for quantum computing. The present work is concerned with the general transport properties of one-dimensional helical states. Beyond the topological protection mentioned above, inelastic backscattering can arise from various microscopic sources, of which the most prominent ones will be discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of electron-electron interactions can be of major importance in this context. First, we review well-established techniques of many-body physics in one dimension such as perturbative renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The latter allow us to treat electron interactions in an exact way. Those methods then are employed to derive the corrections to the conductance in a helical transport channel, that arise from various types of perturbations. Particularly, we focus on the interplay of Rashba spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-particle backscattering. It is demonstrated, that microscopic details of the system, such as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence of non-interacting leads attached to the system, can fundamentally alter the transport signature. By comparison of the predicted corrections to the conductance to a transport experiment, one can gain insight about the microscopic processes and the structure of a quantum spin Hall sample. Another important mechanism we analyze is backscattering induced by magnetic moments. Those findings provide an alternative interpretation of recent transport measurements in InAs/GaSb quantum wells. N2 - Mit der Vorhersage und der experimentellen Entdeckung von topologischen Isolatoren wurde die Grundlage für eine vollkommen neue Art von elektronischen Bauelementen geschaffen. Diese neue Klasse von Materialien zeichnet sich gegenüber herkömmlichen Metallen und Halbleitern durch besondere Transporteigenschaften der Probenoberfläche aus, wobei elektrische Leitung in Randkanälen an den topologischen Grenzflächen des Systems stattfindet. Eine spezielle Form des zweidimensionalen topologischen Isolators stellt der Quanten-Spin-Hall-Zustand dar, welcher in bestimmten Materialien mit starker Spin-Bahn-Kopplung beobachtet werden kann. Die hier auftretenden eindimensionalen Leitungskanäle sind von helikaler Natur, was bedeutet, dass die Orientierung des Spins eines Elektrons und seine Bewegungsrichtung fest miteinander gekoppelt sind. Aufgrund von Symmetrien wie Zeitumkehr ist elastische Rückstreuung an eventuell vorhandenen Störstellen in solchen helikalen Kanälen verboten, sodass elektrische Leitung als nahezu ballistisch betrachtet werden kann. Prinzipiell bieten sich dadurch neue Möglichkeiten zur Konstruktion von energieeffizienten Transistoren, “Spintronik“-Bauelementen, oder zur Erzeugung von speziellen Zuständen, die für den Betrieb eines Quantencomputers benutzt werden könnten. Die vorliegende Arbeit beschäftigt sich mit den allgemeinen Transporteigenschaften von eindimensionalen, helikalen Randzuständen. Neben dem oben erwähnten topologischen Schutz gibt es zahlreiche Störquellen, die inelastische Rückstreuprozesse induzieren. Die wichtigsten davon werden im Rahmen dieser Dissertation beleuchtet. Entscheidend wirkt hierbei oft die Rolle von Elektron-Elektron-Wechselwirkungen, welche in eindimensionalen Systemen generell von großer Bedeutung ist. Zunächst werden bewährte Techniken der Festkörperphysik wie etwa Abelsche Bosonisierung (mithilfe derer Wechselwirkungen in einer Raumdimension exakt berücksichtigt werden können), die Theorie von Luttinger Flüssigkeiten, oder die störungstheoretische Renormierungsgruppenanalyse rekapituliert. Diese Methoden werden im Weiteren benutzt, um die Korrekturen zum Leitwert eines helikalen Transportkanals zu berechnen, welche aufgrund von ausgewählten Störungen auftreten können. Ein Fokus liegt hierbei auf dem Zusammenspiel vonWechselwirkungen und Rashba Spin-Bahn-Kopplung als Quelle inelastischer Ein-Teilchen- oder Zwei-Teilchen-Rückstreuung. Mikroskopische Details wie etwa die Existenz einer Impulsobergrenze, welche das Energiespektrum beschränkt, oder die Anwesenheit von wechselwirkungsfreien Spannungskontakten, sind dabei von grundsätzlicher Bedeutung. Die charakteristische Form der vorhergesagten Korrekturen kann dazu dienen, die Struktur und die mikroskopischen Vorgänge im Inneren einer Quanten-Spin- Hall-Probe besser zu verstehen. Ein weiterer grundlegender Mechanismus ist Rückstreuung verursacht durch magnetische Momente. Aus der entsprechenden Analyse der Korrekturen zur Leitfähigkeit ergeben sich interessante Übereinstimmungen mit aktuellen Experimenten in InAs/GaSb Quantentrögen. KW - Topologischer Isolator KW - Luttinger-Flüssigkeit KW - 1D transport KW - Backscattering KW - Correlated electron effects KW - Transporteigenschaft KW - Elektronischer Transport KW - Dimension 1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153450 ER - TY - THES A1 - Hansen, Nis Hauke T1 - Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten T1 - Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystals N2 - Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. N2 - In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes. The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism. KW - Organischer Halbleiter KW - Ladungstransport KW - organic field-effect transistor KW - photoluminescence spectroscopy KW - electronic transport KW - single crystal KW - Organischer Feldeffekttransistor KW - Photolumineszenzspektroskopie KW - Elektronischer Transport KW - Einkristall Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143972 ER - TY - THES A1 - Pfenning, Andreas Theo T1 - Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren T1 - Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors N2 - Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. N2 - The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines. KW - Resonanz-Tunneldiode KW - Photodetektor KW - AlGaAs KW - Elektronischer Transport KW - RTD KW - Resonanztunneldiode KW - GaAs KW - GaSb KW - Fotodetektor KW - Transportspektroskopie KW - Antimonide KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163205 ER - TY - THES A1 - Breunig, Daniel Manfred T1 - Transport properties and proximity effect of topological hybrid structures T1 - Transporteigenschaften und Proximity-Effekt von topologischen Hybridstrukturen N2 - Over the last two decades, accompanied by their prediction and ensuing realization, topological non-trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenomena all on their own, even more fascinating features emerge when superconducting order is included. Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected surface states, unconventional superconductivity, and even to the emergence of exotic bound states in appropriate setups. This Thesis explores various junctions built from - or incorporating - topological materials in contact with superconducting order, placing particular emphasis on the transport properties and the proximity effect. We begin with the analysis of Josephson junctions where planar samples of mercury telluride are sandwiched between conventional superconducting contacts. The surprising observation of pronounced excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory, has long been an ambiguous issue in this field, since the necessary presumptions are seemingly not met. We propose a resolution to this predicament by demonstrating that the interface properties in hybrid nanostructures of distinctly different materials yet corroborate these assumptions and explain the outcome. An experimental realization is feasible by gating the contacts. We then proceed with NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconducting order. Due to the anisotropy of the electron band structure, both the transport properties as well as the proximity effect depend substantially on the orientation of the interfaces between the materials. Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal contacts. We show that such a system features a tunable dipole character with possible applications in spintronics. Finally, we consider partially superconducting surface states of three-dimensional topological insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a filter for non-local singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved by mere electronic switching processes and in the absence of any magnetic order, rendering such a nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes non-local Andreev processes. N2 - Seit nun gut zwei Jahrzehnten stehen Materialien wie Topologische Isolatoren, Dirac Halbmetalle und Weyl Halbmetalle im Fokus der Forschung der mesoskopischen Festkörperphysik. Diese topologisch nicht-trivialen Materialien weisen sich durch eine Vielzahl faszinierender Eigenschaften aus, insbesondere, wenn sie in Kombination mit supraleitender Ordnung untersucht werden. Die intrinsisch sehr stark ausgeprägte Spin-Bahn Kopplung führt zu charakteristischen Oberflächenzuständen, die durch die Zeitumkehrsymmetrie geschützt sind, zu unkonventioneller Supraleitung und sogar zur Ausbildung exotischer, gebundener Zustände in entsprechenden Strukturen. Diese Dissertation untersucht die Transporteigenschaften als auch den Proximity-Effekt in verschiedenen Kontakten aus topologischen Materialien und Supraleitern. Zu Beginn befassen wir uns mit Josephson-Kontakten, in denen planare Proben aus Quecksilbertellurid in Kontakt mit konventionellen Supraleitern gebracht werden. In solchen Nanostrukturen wurden ausgeprägte Exzessströme gemessen, die zudem in guter Übereinstimmung mit der Blonder-Tinkham-Klapwijk Theorie stehen. Diese Beobachtungen sind jedoch kontraintuitiv, da die Voraussetzungen für den Formalismus scheinbar nicht gegeben sind. Wir zeigen anhand der Grenzflächeneigenschaften zwischen sich deutlich unterscheidenden Materialien, dass diese Annahmen dennoch korrekt sind und die Messergebnisse erklären. Dies lässt sich mit Hilfe von Seitenkontakten in einem Experiment nachweisen. Des Weiteren untersuchen wir Weyl Halbmetalle mit gebrochener Zeitumkehrsymmetrie und im Kontakt mit einem zentralen Supraleiter. Die Transporteigenschaften, wie auch der Proximity-Effekt, hängen wegen der Anisotropie der Bandstruktur stark von der Ausrichtung der Grenzflächen zwischen den Materialien ab. Zudem lässt sich ein Ungleichgewicht in der Elektronenpopulation zwischen Weylknoten unterschiedlicher Chiralität einstellen, was zu einer endlichen Spinpolarisation der Cooper-Paare führt, die in die normalleitenden Kontakte eindringen. Das System weist dann einen steuerbaren Dipolcharakter auf, welcher interessant für Anwendungen in der Spintronik ist. Schlussendlich analysieren wir den Oberflächenzustand eines dreidimensionalen topologischen Isolators, der lokal supraleitende Ordnung aufweist. Wird ein solches System in den sogenannten bipolaren Setup eingestellt, kann es zur Erzeugung und Manipulation von Triplet-Cooper-Paaren mit endlicher Spinpolarisation im Supraleiter verwendet werden. Gleichzeitig stellt es einen Filter für nicht-lokale Spin-Singlet-Paarung dar. Realisiert wird dies mit Hilfe elektrischer Spannung, und bedarf insbesondere keiner magnetische Ordnung zur Ausrichtung des Spin. Stattdessen verlassen wir uns auf die starke Spin-Bahn-Kopplung des Oberflächenzustands sowie den bipolaren Setup, welcher den nicht-lokalen Transport deutlich verstärkt. KW - Supraleitung KW - Elektronischer Transport KW - Topological Materials KW - Superconductivity KW - Mesoscopic Transport Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250546 ER - TY - THES A1 - Mahler, David T1 - Surface states in the topological material HgTe T1 - Oberflächenzustände im topologischen Material HgTe N2 - The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials. N2 - Der technologische Fortschritt schreitet immer schneller voran. Um diese Entwicklung zu ermöglichen, werden die Strukturen immer kleiner. Das Erreichen atomarer Größen könnte bald die Abkehr von der üblichen Miniaturisierung erfordern und den Sprung zu einer neuen Technologie erzwingen. Die Motivation dieser Arbeit ist es das Verständnis topologischer Materialien zu erweitern und so einen Beitrag zu der Realisierung eines solchen potenziellen Technologiesprungs zu leisten. Eine vielversprechende Möglichkeit zur Aufrechterhaltung der aktuellen Entwicklungsgeschwindigkeit ist die Realisierung eines skalierbaren Quantencomputers. Eine mögliche Umsetzung ist das topologische Quantum-Computing, das zum Beispiel durch induzierte Supraleitung in topologische Oberflächenzustände realisiert werden könnte. Das tiefgehende Verständnis der topologischen Oberflächenzustände und deren Manipulation ist ein Schwerpunkt dieser Arbeit. Der zweite Schwerpunkt wurde kürzlich auch als ein potenzieller Pfad zur Realisierung eines Quantencomputers basierend auf „chiralen Qubits“ vorgeschlagen, nämlich dem Nachweis und die Untersuchung des Transportphänomens der sogenannten chiralen Anomalie in Dirac- und Weyl-Halbmetallen. Die Untersuchungen in dieser Arbeit wurden am MBE gewachsenen topologischen Material HgTe durchgeführt. HgTe zeichnet sich dadurch aus, dass verschiedene topologische Phasen realisierbar sind. Dazu wird die HgTe-Schicht durch die Wahl entsprechender Substrate verspannt. Als Startpunkt für die Analyse der topologischen Oberflächenzustände habe ich die topologische Isolator-Phase gewählt. Diese wird durch ein gedehntes MBE-Wachstum der HgTe-Schicht auf einem CdTe-Substrat realisiert. Eine hohe Qualität der HgTe-Schicht und Oberfläche wurde dabei mit Hilfe von schützenden \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schichten gewährleistet. Wir haben zusätzlich eine Modulationsdoping Schicht in der unteren \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schicht eingeführt, die für eine kleine endliche Elektronendichte in der HgTe-Schicht sorgt. Diese Dotierung gewährleistet eine zuverlässige elektrische Kontaktierung. Aus diesen Waferstücken haben wir mit Hilfe optischer Lithografie und trocknen Ätzens so genannte Hall-Bars strukturiert, die aus einem Strompfad mit vier längs und quer angeordneten Spannungsabgriffen besteht. Eine Möglichkeit zur Kontrolle der Ladungsträgerdichte in der HgTe-Schicht wird über eine aufgedampfte Gate-Elektrode geschaffen. Diese Hall-Bars habe ich mit Hilfe von niedrig frequenten Wechselspannungsmessungen unter hohen Magnetfeldern bis zu 30 T bei tiefen Temperaturen von 2 K in Helium-Kryostaten bzw. 0.1 K in \(\text{He}_3\text{/He}\_4\)-Misch-Kryostaten untersucht. Die hohe Qualität der HgTe-Schicht spiegelt sich in den zuverlässig erreichten hohen Beweglichkeiten in der Größenordnung von \(0.5 \times 10^{6}\,\text{cm}^{2}/\text{Vs}\) im Elektronenregime und \(0.03 \times 10^6\,\text{cm}^2/\text{Vs}\) im Lochregime wider. Eine Quantisierung des Magneto-Transport ist dadurch schon für kleine Magnetfelder von \(B \gtrsim 0.5\,\text{T}\) beobachtbar. Dies ermöglichte mir die Analyse der Dispersion der Landau Levels und damit der Nachweis der Existenz von sechs zweidimensionalen Transportkanälen. Zwei dieser Kanäle konnten wir mit den topologischen Oberflächenzuständen identifizieren. Den Einfluss der Spannungen, die an der Gate-Elektrode angelegt wurden, haben wir in hoch frequenten Compressibilitätsmessungen festgestellt. In diesen Messungen haben wir für sehr hohe Elektrodenspannungen Hinweise auf zusätzliche massive Volkov-Pankratov Zustände gefunden. Der Name ist dabei gewählt worden, um die Vorhersage derartiger Zustände durch B. A. Volkov und O. A. Pankratov zu würdigen. Den Ursprung der vier weiteren Transportkanäle konnten wir mit Hilfe von Bandstrukturberechnungen auf zusätzliche Oberflächenzustände zurückführen. Die Berechnung haben wir mit Hilfe des Kane Models in der \(k \cdot p\) Näherung unter Beachtung der Hatree Potentiale, welche die angelegte Spannung an der Gate-Elektrode repräsentieren, durchgeführt. Die elektronenartigen topologischen Oberflächenzustände konnten für den ganzen untersuchten Elektrodenspannungsbereich nachgewiesen werden. Wir haben aber auch ein signifikantes und manipulierbares Elektrodenspannungsfenster gefunden, in welchem nur topologische Oberflächenzustände besetzt sind. Eine Möglichkeit zur Manipulation der Eigenschaften der topologischen Oberflächenzustände ist die Variation der Verspannung mit Hilfe des MBE-Wachstums auf virtuellen Substraten aus alternierenden \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\)- und CdTe-Schichten mit einstellbarer Gitterkonstante. Die HgTe-Schicht haben wir durch das Wachstum auf ein entsprechendes virtuelles Substrates druck- anstatt zugverspannt. Die HgTe-Schicht befindet sich dadurch in der Dirac-Halbmetall anstatt der dreidimensionalen topologischen Isolator-Phase. Dirac- Halbmetalle zeichnen sich durch einen linearen Kreuzungspunkt der Volumenmaterialbänder aus. Ich konnte topologische Oberflächenzustände und massive Volkov-Pankratov Zustände auch in der Dirac-Halbmetall-Phase nachweisen. Dieser Umstand weist die Existenz und Stabilität der topologischen Oberflächenzustände auch ohne Bandlücke in der Bandstruktur des Volumenmaterials nach. Des Weiteren betont die Anwesenheit der topologischen Oberflächenzustände die Relevanz der inhärenten Bandinversion für die Klasse der inversionsinduzierten Dirac-Halbmetalle. In druckverspanntem HgTe habe ich Quanten-Hall-Effekt beobachtet, der nur in zweidimensionalen Systemen auftritt. Ähnliche Beobachtungen wurden auch für andere Dirac-Halbmetalle, wie \(\text{Cd}_3\text{As}_2\), berichtet. Die topologischen Oberflächenzustände schlage ich als einfache und einheitliche Erklärung für diesen zweidimensionalen Transport vor. Die Anwesenheit linearer Kreuzungspunkte in der Volumenmaterialbandstruktur druckverspannten HgTes konnte ich durch die Beobachtung der chiralen Anomalie nachweisen. Damit konnte ich nicht nur druckverspanntes HgTe als Dirac-Halbmetall nachweisen, sondern auch einen Beitrag zum besseren Verständnis der chiralen Anomalie leisten. Des Weiteren habe elektrodenspannungsabhängige Messungen gezeigt, dass parallel anwesende Oberflächenzustände das Signal der chiralen Anomalie zwar überlagern, dieses aber nicht verhindern. Außerdem habe ich Untersuchungen an unterspannten HgTe Schichten durchgeführt, welche Halbmetalle mit einem Berührungspunkt zweier Bänder mit quadratischer Dispersion darstellen. Auch in diesen Schichten wurde die chirale Anomalie beobachtet. Dies verdeutlicht die Relevanz des Zeeman-Effektes für die Ausbildung der chiralen Anomalie in HgTe. Die chirale Anomalie zeigte eine unerwartet Magnetfeldrichtungsabhängigkeit des Wiederstandes im Bezug zur Stromrichtung. Diese Magnetfeldrichtungsabhängigkeit betont die Notwendigkeit der Beschreibung des Widerstandes als Tensor, damit die dreidimensionale Ausdehnung der experimentellen Proben und der daraus folgenden Effekte, wie dem Planar-Halleffekt, korrekt beschrieben werden. Des Weiteren habe ich eine für dreidimensionale Proben außergewöhnlich stark ausgeprägte Weak-Antilokalisierung beobachtet. Diese könnte spezifisch für topologische Halbmetalle sein, da ähnliche Beobachtungen auch für das Weyl Halbmetall TaA berichtet wurden. Das Ziel dieser Arbeit war es einen Beitrag zum technologischen Fortschritt durch das bessere Verständnis topologischer Materialen zu leisten. Dieses Ziel konnte somit erreicht werden. Wir können alle Zustände, die wir in dem dreidimensionalen topologischen Isolator zugverspanntes HgTe beobachtet haben, ihrem Ursprung zuordnen. Dies ermöglicht uns die Präparation und Manipulation der gewünschten Zustände für komplexe Bauteile, wie topologische und supraleitende Hybridstrukturen, zu optimieren. Ich konnte auch zum besseren Verständnis der Materialklasse der inversionsinduzierten Dirac-Halbmetalle beigetragen, indem ich die an druckverspannten HgTe gewonnen Erkenntnisse auf die gesamte Materialklasse der inversionsinduzierten Dirac-Halbmetalle verallgemeinern konnte. Dies ist zum Beispiel anhand des Nachweises der Anwesenheit von topologischen Oberflächenzuständen geschehen. Außerdem konnte ich neue Einblicke in die chirale Anomalie gewinnen. Die Existenz linearer Kreuzungspunkte in der Volumenmaterialbandstruktur wurde dabei als notwendige Bedingung bestätigt. Damit konnte ich einen Beitrag zum Verständnis der Grundbausteine für zweimögliche Pfade zu einem potenziellen Quantencomputer in der Form von zug- und druckverspanntem HgTe leisten. KW - Quecksilbertellurid KW - Topologischer Isolator KW - Elektronischer Transport KW - Oberflächenzustand KW - Dirac semimetal KW - topological insulator KW - HgTe KW - topological surface states KW - Volkov-Pankratov states Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253982 ER -