TY - JOUR A1 - Barthels, Fabian A1 - Marincola, Gabriella A1 - Marciniak, Tessa A1 - Konhäuser, Matthias A1 - Hammerschmidt, Stefan A1 - Bierlmeier, Jan A1 - Distler, Ute A1 - Wich, Peter R. A1 - Tenzer, Stefan A1 - Schwarzer, Dirk A1 - Ziebuhr, Wilma A1 - Schirmeister, Tanja T1 - Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A JF - ChemMedChem N2 - Staphylococcus aureus is one of the most frequent causes of nosocomial and community‐acquired infections, with drug‐resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active‐site cysteine. A broad series of derivatives were synthesized to derive structure‐activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single‐digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase‐mediated adherence of S. aureus cells. KW - antibiotics KW - biofilm KW - drug design KW - sortase A Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214581 VL - 15 IS - 10 SP - 839 EP - 850 ER - TY - JOUR A1 - Mottola, Austin A1 - Schwanfelder, Sonja A1 - Morschhäuser, Joachim T1 - Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion JF - mSphere N2 - The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1 Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1 Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1 Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1 Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1 Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1 Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. KW - Candida albicans KW - Snf1 KW - conditional mutants KW - essential genes KW - protein kinases Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230524 VL - 5 IS - 4 ER - TY - JOUR A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Mühlberg, Eric A1 - Kleist, Christian A1 - Zimmermann, Stefan A1 - Beijer, Barbro A1 - Klika, Karel D. A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides JF - Angewandte Chemie International Edition N2 - Multidrug‐resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site‐specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000‐fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d‐Ala‐d‐Ala revealed a mode of action beyond inhibition of cell‐wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics. KW - antibiotics KW - bacterial resistance KW - glycopeptide antibiotics KW - peptide conjugates KW - vancomycin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215550 VL - 59 IS - 23 SP - 8823 EP - 8827 ER - TY - JOUR A1 - Esken, Jens A1 - Goris, Tobias A1 - Gadkari, Jennifer A1 - Bischler, Thorsten A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Diekert, Gabriele A1 - Schubert, Torsten T1 - Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two‐component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies JF - MicrobiologyOpen N2 - Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE‐respiring representatives of the genus, uncovered the genetic inactivation of a two‐component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low‐level expression of the TCS operon in fumarate‐adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR‐family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter‐binding assays. The RR bound a cis‐regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the −35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine‐tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide‐respiring bacteria. KW - genomics KW - organohalide respiration KW - RNA sequencing KW - tetrachloroethene KW - transcriptomics KW - two‐component system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225754 VL - 9 IS - 12 ER - TY - JOUR A1 - Mayr, Eva-Maria A1 - Ramírez-Zavala, Bernardo A1 - Krüger, Ines A1 - Morschhäuser, Joachim T1 - A Zinc Cluster Transcription Factor Contributes to the Intrinsic Fluconazole Resistance of Candida auris JF - mSphere N2 - ABSTRACT The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris. The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism. IMPORTANCE Candida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris. We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast." KW - Candida auris KW - fluconazole resistance KW - transcription factor Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229937 VL - 5 IS - 2 ER - TY - JOUR A1 - Michaux, Charlotte A1 - Hansen, Elisabeth E. A1 - Jenniches, Laura A1 - Gerovac, Milan A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium JF - Frontiers in Cellular and Infection Microbiology N2 - Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse. KW - transcription start sites KW - RNA-seq KW - sRNA atlas KW - Gram-positive bacteria KW - post-transcriptional regulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217947 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Mietrach, Nicole A1 - Schlosser, Andreas A1 - Geibel, Sebastian T1 - An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization JF - Acta Crystallographica Section F N2 - The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α‐helices with a melting point of 34.5°C. Size‐exclusion chromatography combined with multi‐angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging‐drop vapor‐diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit‐cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°. KW - ESAT‐6‐like secretion system KW - ESS KW - type VII secretion system KW - EsaA KW - extracellular domain KW - Staphylococcus aureus USA300 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213681 VL - 75 IS - 12 ER - TY - JOUR A1 - Seethaler, Marius A1 - Hertlein, Tobias A1 - Wecklein, Björn A1 - Ymeraj, Alba A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species JF - Antibiotics N2 - Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials. KW - antibacterial activity KW - synthesis KW - substituent KW - structure-activity KW - inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193130 SN - 2079-6382 VL - 8 IS - 4 ER - TY - JOUR A1 - Gomes, Sara F. Martins A1 - Westermann, Alexander J. A1 - Sauerwein, Till A1 - Hertlein, Tobias A1 - Förstner, Konrad U. A1 - Ohlsen, Knut A1 - Metzger, Marco A1 - Shusta, Eric V. A1 - Kim, Brandon J. A1 - Appelt-Menzel, Antje A1 - Schubert-Unkmeir, Alexandra T1 - Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection JF - Frontiers in Microbiology N2 - Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs. KW - Neisseria meningitidis KW - meningococcus KW - bacteria KW - stem cells KW - blood-cerebrospinal fluid barrier KW - blood-brain barrier KW - brain endothelial cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201562 VL - 10 IS - 1181 ER - TY - JOUR A1 - Weidner, Magdalena T. A1 - Lardenoije, Roy A1 - Eijssen, Lars A1 - Mogavero, Floriana A1 - De Groodt, Lilian P. M. T. A1 - Popp, Sandy A1 - Palme, Rupert A1 - Förstner, Konrad U. A1 - Strekalova, Tatyana A1 - Steinbusch, Harry W. M. A1 - Schmitt-Böhrer, Angelika G. A1 - Glennon, Jeffrey C. A1 - Waider, Jonas A1 - van den Hove, Daniel L. A. A1 - Lesch, Klaus-Peter T1 - Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala JF - Frontiers in Neuroscience N2 - Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability. KW - serotonin KW - maternal separation KW - mouse KW - emotional behavior KW - DNA methylation KW - RNA expression Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201340 VL - 13 ER - TY - JOUR A1 - Popp, Christina A1 - Ramírez-Zavala, Bernardo A1 - Schwanfelder, Sonja A1 - Krüger, Ines A1 - Morschhäuser, Joachim T1 - Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination JF - mBio N2 - The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans. Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny. KW - Candida albicans KW - drug resistance evolution KW - mating KW - parasexual recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200901 VL - 10 IS - 1 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Venturini, Elisa A1 - Sellin, Mikael E. A1 - Förstner, Konrad U. A1 - Hardt, Wolf-Dietrich A1 - Vogel, Jörg T1 - The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium JF - mBio N2 - FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked “third domain” of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria. KW - Hfq KW - noncoding RNA KW - ProQ KW - RNA-seq KW - bacterial pathogen KW - posttranscriptional control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177722 VL - 10 IS - 1 ER - TY - JOUR A1 - Mottola, Austin A1 - Morschhäuser, Joachim T1 - An intragenic recombination event generates a Snf4-independent form of the essential protein kinase SNF1 in Candida albicans JF - mSphere N2 - The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1\(^{Δ311 − 316}\) was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1\(^{Δ311 − 316}\) still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. KW - AMP-activated kinases KW - Candida albicans KW - genetic recombination KW - metabolic adaptation KW - suppressor mutation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202170 VL - 4 IS - 3 ER - TY - JOUR A1 - Fan, Sook-Ha A1 - Ebner, Patrick A1 - Reichert, Sebstian A1 - Hertlein, Tobias A1 - Zabel, Susanne A1 - Lankapalli, Aditya Kumar A1 - Nieselt, Kay A1 - Ohlsen, Knut A1 - Götz, Friedrich T1 - MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels JF - Nature Communications N2 - The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter. KW - bacterial physiology KW - bacteriology KW - pathogens Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227624 VL - 10 ER - TY - JOUR A1 - Kraus, Amelie J. A1 - Brink, Benedikt G. A1 - Siegel, T. Nicolai T1 - Efficient and specific oligo-based depletion of rRNA JF - Scientific Reports N2 - In most organisms, ribosomal RNA (rRNA) contributes to >85% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available. KW - parasite biology KW - RNA sequencing KW - transcriptomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224829 VL - 9 ER - TY - THES A1 - Lerch, Maike Franziska T1 - Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\) T1 - Charakterisierung einer neuen nicht-kodierenden RNA und deren Beteiligung an der PIA-vermittelten Biofilmbildung von \(Staphylococcus\) \(epidermidis\) N2 - Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future. N2 - Koagulase-negative Staphylokokken besiedeln die menschliche und tierische Haut, sowie die Schleimhäute. Durch Läsionen oder das Einbringen von medizinischen Instrumenten wie Kathetern gelangen sie in tiefere Hautschichten oder die Blutbahn und können dort schwerwiegende Infektionen auslösen, vor Allem bei Risikopersonen. Besonders Staphylococcus epidermidis hat sich als Verursacher von nosokomialen Infektionen, aber auch als Pathogen in der Tierhaltung etabliert. Die Bakterien bilden bei der Besiedlung sogenannte Biofilme aus (d.h. eine Akkumulation der Keime, die von einer extrazellulären Matrix umgeben sind). Diese Matrix besteht neben Proteinen und eDNA hauptsächlich aus einem Polysaccharid, dem interzellulären Adhäsin PIA (engl.: polysaccharide intercellular adhesin). Dieses wird durch die Ica-Proteine synthetisiert, die im icaADBC-Operon (engl.: intercellular adhesin operon) kodiert sind. Das Operon hat große Bedeutung in klinischen Stämmen und wurde daher innerhalb der letzten beiden Jahrzehnte eingehend untersucht, auch im Hinblick auf seine Regulation. In der unmittelbaren Umgebung des icaADBC-Operons, stromabwärts des icaR Gens, das für den Repressor des ica-Operons (IcaR) kodiert, wurde ein großes Transkript identifiziert, von dem vermutet wird, dass es möglicherweise an der Regulation der Biofilmbildung beteiligt ist (Eckart, 2006). Ziel dieser Arbeit war es, dieses Transkript zu charakterisieren und seine Funktion in S. epidermidis aufzudecken. Die nicht-kodierende RNA, genannt IcaZ, hat eine Länge von ~400 nt und ist spezifisch für ica-positive S. epidermidis. Sie wird in der frühen bis mittleren exponentiellen Phase temperaturabhängig exprimiert. Stromaufwärts überlappt das icaZ-Gen und dessen Promotor mit der 3' UTR vom icaR-Gen. Stromabwärts wird das icaZ-Gen vom einem Transkriptionsterminator begrenzt, der auch für das tRNAThr-4-Gen benutzt wird, das auf dem gegenüberliegenden Strang in Richtung des icaZ-Gens lokalisiert ist. Die Deletion der RNA führte zu einem makroskopisch sichtbaren Biofilm-negativen Phänotyp mit deutlich verminderter PIA Bildung. Die Biofilmzusammensetzung wurde in vitro mittels eines klassischen Kristallviolett-Assays gemessen und die Biofilmbildung in vivo in Echtzeit mittels konfokaler Mikroskopie (CLSM) betrachtet. Dabei wurde mit einer peristaltischen Pumpe ein Mediumfluss appliziert. Die Mutante zeigte klare Defekte in der initialen Adhärenz und in der Zell-Zell Adhäsion. Sie bildete im Gegensatz zum Wildtyp keinen strukturierten Biofilm aus. Zur Komplementierung des Biofilms wurde die IcaZ von einem Plasmid exprimiert und die Biofilmzusammensetzung nach 18-20 Stunden Wachstum gemessen. Die Ergebnisse dieser Untersuchungen in den verschiedenen Mutanten waren nicht eindeutig. Um die Funktion von IcaZ aufzudecken, wurden Transkriptom- und Proteomvergleiche zwischen Wildtyp und Mutante gemacht. Diese lieferten einige Hinweise, aber da der metabolische Unterschied eines Biofilmbildners zu einem Nicht-Biofilmbildner zu groß war, wurde eine direktere Methode angewandt, die induzierte Expression (Pulsexpression). Zudem wurden potentielle Interaktionspartner der IcaZ mittels computer-basierter Bindungsvorhersagen analysiert. Die icaR mRNA kristallisierte sich dabei als Target heraus und die Interaktion zwischen IcaZ und icaR mRNA wurde mit Gelshift-Assays (EMSA) untersucht. Eine Bandenverschiebung wurde mit icaR 3' UTR und mit dem icaR-5'-3' UTR-Fusionsprodukt detektiert, wohingegen keine Interaktion zwischen IcaZ und icaA mRNA stattfand. Aufgrund dieser Assays wurde vermutet, dass IcaZ die Translation von icaR in S. epidermidis reguliert. In S. aureus fehlt die nicht-kodierende RNA IcaZ und für icaR mRNA wurde eine Autoregulation gezeigt, bei der die icaR 5' UTR mit der icaR 3' UTR intramolekular oder intermolekular durch Basenpaarung interagiert, wodurch die Shine-Dalgarno Sequenz blockiert wird und es aufgrund dessen zu einer Hemmung der Translation kommt. Die Umweltfaktoren, die dazu führen sind bisher unbekannt. Der Komplex wird durch eine Endoribonuklease, RNase III, abgebaut (Ruiz de los Mozos et al., 2013). In S. epidermidis wurde eine solche Interaktion theoretisch ausgeschlossen. Experimentelle Analysen dieser Arbeit haben gezeigt, dass diese Autoregulation in S. epidermidis nicht stattfinden kann und es wird angenommen, dass IcaZ diese Regulation übernimmt. Um die Interaktion zu visualisieren wurden GFP-Reporter Plasmide generiert, die aber für weitere Experimente noch zu verbessern sind. Zusammenfassend lässt sich sagen, dass IcaZ mit der icaR mRNA interagiert, was höchstwahrscheinlich zu einer Hemmung der Translation des Repressors IcaR führt und damit letztlich PIA-Synthese und Biofilmbildung positiv reguliert. Zusätzlich wurde gefunden, dass Ethanol die Expression der IcaZ-RNA induziert, während NaCl nur schwache Effekte zeigte und Glucose keinen Einfluss auf die Expression von icaZ hatte. Ethanol ist ein Bestandteil von Desinfektionsmitteln, die in Krankenhäusern verwendet werden und ist bekannt dafür Biofilmbildung auszulösen. Da die Bildung von Biofilmen auf medizinischen Geräten kritisch ist und diese die Behandlung von S. epidermidis Infektionen erschweren, tragen die Ergebnisse dieser Arbeit nicht nur zu einem besseren Verständnis des komplexen Netzwerks der Biofilmregulation bei, sondern haben möglicherweise auch praktischen Nutzen in der Zukunft. KW - Biofilm KW - Staphylococcus epidermidis KW - Non-coding RNA KW - Hospitalismus KW - icaADBC KW - Nosocomial Infections KW - Polysaccharide intercellular adhesin (PIA) KW - Biofilm formation KW - non-coding RNA KW - ncRNA KW - Nosokomiale Infektionen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155777 ER - TY - JOUR A1 - Sanyal, Anirban A1 - Wallaschek, Nina A1 - Glass, Mandy A1 - Flamand, Louis A1 - Wight, Darren J. A1 - Kaufer, Benedikt B. T1 - The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome JF - Viruses N2 - Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells. KW - human herpesvirus 6 KW - ND10 complex KW - PML KW - lytic replication KW - latency KW - PML nuclear-bodies KW - gene-expression KW - virus-infection KW - in-vitro KW - DNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227337 VL - 10 IS - 8 ER - TY - THES A1 - Hampe, Irene Aurelia Ida T1 - Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\) T1 - Analyse des Mechanismus und der Regulierung von Histatin 5 Resistenz in \(Candida\) \(albicans\) N2 - Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug. N2 - Antimykotika wie Fluconazol werden häufig zur Behandlung von C. albicans Infektionen der Mundschleimhaut verwendet. Dabei stellt eine langzeitige Behandlung der Pilzinfektion mit Fluconazol ein Risiko zur Resistenzentwicklung dar. C. albicans kann sich an solche Umweltveränderungen anpassen, indem es die Genexpression reguliert oder genetisch veränderte Varianten produziert, welche in der Population entstehen. Adaptierte Varianten tragen häufig aktivierende Mutationen in Zink-Cluster-Transkriptionsfaktoren, welche die Hochregulierung der Expression von Genen verursachen, darunter solche, die für Multidrug-Effluxpumpen kodieren und dadurch Antimykotikaresistenz verleihen können. MDR1, reguliert durch den Zink-Cluster-Transkriptionsfaktor Mrr1, sowie CDR1 und CDR2, reguliert durch den Zink-Cluster-Transkriptionsfaktor Tac1, sind bekannte Beispiele für Effluxpumpen, die das Antimykotikum Fluconazol aus der Pilzzelle extrudieren und somit zum Überleben der Pilzzelle beitragen. In dieser Arbeit wurde untersucht, ob C. albicans eine Resistenz gegen das antimikrobielle Peptid Histatin 5 entwickeln kann, das in der Mundhöhle des menschlichen Wirtes als erste Verteidigungsbarriere gegen den Pilz dient. Kürzlich wurde gezeigt, dass C. albicans Histatin 5 über die Effluxpumpe Flu1 aus der Candia-Zelle heraustransportiert (Li et al., 2013). Da Effluxpumpen häufig durch Zink-Cluster-Transkriptionsfaktoren reguliert werden, könnte auch die Flu1-Effluxpumpe durch solch einen Transkriptionsfaktor reguliert werden, der in einer hyperaktiven Form die Expression der Effluxpumpe hochregulieren könnte, was wiederrum zu einem erhöhten Export von Histatin 5 und folglich zur Histatin 5 Resistenz führen könnte. Um einen Zink-Cluster-Transkriptionsfaktor zu finden, der die FLU1-Expression hochreguliert, wurde mit Hilfe einer Bibliothek von C. albicans-Stämmen, die künstlich aktivierte Formen von Zink-Cluster-Transkriptionsfaktoren enthält, nach geeigneten Kandidaten gesucht. Das Screening wurde auf Mycophenolsäure-haltigem Medium durchgeführt, da Mycophenolsäure ebenfalls ein Substrat von Flu1 ist. Folglich sollte ein Stamm mit hyperaktivem Zink-Cluster-Transkriptionsfaktor, welcher die FLU1-Expression hochreguliert, einen leicht erkennbaren Mycophenolsäure-resistenten Phänotyp aufweisen. Weiterhin wurden FACS-Analysen, quantitative real-time RT-PCR-Analysen, Broth microdilution-Assays sowie Histatin 5-Assays durchgeführt, um den Mechanismus und die Regulierung der Histatin-5-Resistenz zu analysieren. Mehrere Zink-Cluster-Transkriptionsfaktoren verursachten Mycophenolsäure-Resistenz und erhöhten die FLU1-Expression. Von diesen war nur hyperaktives Mrr1 in der Lage, eine erhöhte Histatin-5-Resistenz zu verleihen. Das Auffinden von Mrr1 als Regulator der Histatin 5-Resistenz war hochinteressant, da fluconazolresistente Stämme mit natürlich vorkommenden MRR1 gain-of-function Mutationen existieren, die aus HIV-infizierten Patienten mit oropharyngealer Candidiasis isoliert wurden. Diese gain-of-function Mutationen sowie künstlich aktivierendes Mrr1 verursachen Fluconazol-Resistenz durch Hochregulation der Effluxpumpe MDR1 und anderer Zielgene. Im Verlauf der Studie wurde herausgefunden, dass verschiedene natürlich vorkommende MRR1 gain-of-function Mutationen im SC5314 Wildtyp Hintergrund eine erhöhte FLU1-Expression und eine erhöhte Histatin-5-Resistenz verursachten. Das Gleiche galt für Fluconazol-resistente klinische Isolate mit Mrr1 gain-of-function Mutationen, welche die Überexpression von FLU1 verursachten. Zellen dieser Isolate wurden, abhängig von Mrr1, weniger wirksam durch Histatin 5 abgetötet. Überraschenderweise trug FLU1 nur wenig zur Histatin-5-Resistenz bei, vielmehr trug die Überexpression von MDR1 hauptsächlich zur Mrr1-vermittelten Histatin-5-Resistenz bei, aber auch weitere Mrr1-Zielgene waren daran beteiligt. Diese Mrr1-Zielgene gilt es nun noch zu entdecken. Ob ein Zusammenhang zwischen diesen noch unbekannten Mrr1-Zielgenen hergestellt werden kann, die zur Fluconazolresistenz sowie zu einer erhöhten Histatin-5-Resistenz beitragen, wird erst nach dem Auffinden der verantwortlichen Zielgene geprüft werden können. Zusammenfassend trägt diese Studie zum Verständnis der Auswirkungen einer anhaltenden antimykotischen Exposition auf die Interaktion zwischen Wirt und Pilz bei. Eine medikamentöse Therapie kann zu einer Resistenzentwicklung führen, aus der Stämme hervorgehen, welche nicht nur eine Resistenz gegen Fluconazol entwickelt haben, sondern gleichzeitig eine Resistenz gegen einen angeborenen Wirtsabwehrmechanismus, der eine Adaption an die Wirtsnische auch in Abwesenheit des Antimykotikums ermöglicht. KW - Histatin 5 KW - Candida albicans KW - Efflux pump KW - MDR1 KW - MRR1 KW - Mrr1 KW - MDR1 KW - Fluconazole KW - Efflux pump Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159634 ER - TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - JOUR A1 - Jarick, Marcel A1 - Bertsche, Ute A1 - Stahl, Mark A1 - Schultz, Daniel A1 - Methling, Karen A1 - Lalk, Michael A1 - Stigloher, Christian A1 - Steger, Mirco A1 - Schlosser, Andreas A1 - Ohlsen, Knut T1 - The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus JF - Scientific Reports N2 - The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels. KW - bacterial transcription KW - pathogens KW - cell wall synthesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177333 VL - 8 IS - 13693 ER - TY - JOUR A1 - Bar-Yosef, Hagit A1 - Gildor, Tsvia A1 - Ramírez-Zavala, Bernardo A1 - Schmauch, Christian A1 - Weissman, Ziva A1 - Pinsky, Mariel A1 - Naddaf, Rawi A1 - Morschhäuser, Joachim A1 - Arkowitz, Robert A. A1 - Kornitzer, Daniel T1 - A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1 JF - Frontiers in Cellular and Infection Microbiology N2 - The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation. KW - hyphae KW - endocytosis KW - Pan1 KW - functional genomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197204 SN - 2235-2988 VL - 8 ER - TY - JOUR A1 - Förstner, Konrad U A1 - Reuscher, Carina M A1 - Haberzettl, Kerstin A1 - Weber, Lennart A1 - Klug, Gabriele T1 - RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth JF - Life Science Alliance N2 - Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth. KW - Rhodobacter sphaeroides KW - phototrophic growth KW - RNase E Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177139 VL - 1 IS - 4 ER - TY - JOUR A1 - Bruchhagen, Christin A1 - Jarick, Marcel A1 - Mewis, Carolin A1 - Hertlein, Tobias A1 - Niemann, Silke A1 - Ohlsen, Knut A1 - Peters, Georg A1 - Planz, Oliver A1 - Ludwig, Stephan A1 - Ehrhardt, Christina T1 - Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound JF - Scientific Reports N2 - Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system. KW - antimicrobials KW - pathogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221648 VL - 8 ER - TY - JOUR A1 - Allert, Stefanie A1 - Förster, Toni M. A1 - Svensson, Carl-Magnus A1 - Richardson, Jonathan P. A1 - Pawlik, Tony A1 - Hebecker, Betty A1 - Rudolphi, Sven A1 - Juraschitz, Marc A1 - Schaller, Martin A1 - Blagojevic, Mariana A1 - Morschhäuser, Joachim A1 - Figge, Marc Thilo A1 - Jacobsen, Ilse D. A1 - Naglik, Julian R. A1 - Kasper, Lydia A1 - Mogavero, Selene A1 - Hube, Bernhard T1 - \(Candida\) \(albicans\)-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers JF - mBio N2 - Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. IMPORTANCE Candida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer. KW - Candida albicans KW - candidalysin KW - host cell damage KW - host cell invasion KW - intestinal barrier KW - necrosis KW - translocation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221084 VL - 9 IS - 3 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Skaf, Joseph A1 - Holzgrabe, Ulrike A1 - Bharti, Richa A1 - Förstner, Konrad U. A1 - Ziebuhr, Wilma A1 - Humeida, Ute H. A1 - Abdelmohsen, Usama R. A1 - Oelschlaeger, Tobias A. T1 - A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs. KW - marine sponges KW - Streptomyces KW - Staphylococci KW - device-related infections KW - bioassay-guided fractionation KW - transcriptome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221408 VL - 9 ER - TY - JOUR A1 - Bury, Susanne A1 - Soundararajan, Manonmani A1 - Bharti, Richa A1 - von Bünau, Rudolf A1 - Förstner, Konrad U. A1 - Oelschlaeger, Tobias A. T1 - The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda JF - Frontiers in Microbiology N2 - Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people. KW - probiotic KW - E. coli Nissle 1917 KW - EHEC KW - Shiga toxin producing E. coli KW - stx-phages KW - lambda-phages KW - lambdoid prophage KW - LamB Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221960 VL - 9 ER - TY - JOUR A1 - Sunkavalli, Ushasree A1 - Aguilar, Carmen A1 - Silva, Ricardo Jorge A1 - Sharan, Malvika A1 - Cruz, Ana Rita A1 - Tawk, Caroline A1 - Maudet, Claire A1 - Mano, Miguel A1 - Eulalio, Ana T1 - Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia JF - PLoS Pathogens N2 - MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells. KW - hos tcells KW - Salmonellosis KW - Shigellosis KW - microRNAs KW - Shigella KW - small interfering RNAs KW - HeLa cells KW - Cell binding Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158204 VL - 13 IS - 4 ER - TY - THES A1 - Oesterreich, Babett T1 - Preclinical development of an immunotherapy against antibiotic-resistant Staphylococcus aureus T1 - Präklinische Entwicklung einer Immuntherapie zur Behandlung Antibiotika-resistenter Staphylococcus aureus N2 - The Gram-positive bacterium Staphylococcus aureus is the leading cause of nosocomial infections. In particular, diseases caused by methicillin-resistant S. aureus (MRSA) are associated with higher morbidity, mortality and medical costs due to showing resistance to several classes of established antibiotics and their ability to develop resistance mechanisms against new antibiotics rapidly. Therefore, strategies based on immunotherapy approaches have the potential to close the gap for an efficient treatment of MRSA. In this thesis, a humanized antibody specific for the immunodominant staphylococcal antigen A (IsaA) was generated and thoroughly characterized as potential candidate for an antibody based therapy. A murine monoclonal antibody was selected for humanization based on its binding characteristics and the ability of efficient staphylococcal killing in mouse infection models. The murine antibody was humanized by CDR grafting and mouse and humanized scFv as well as scFv-Fc fragments were constructed for comparative binding studies to analyse the successful humanization. After these studies, the full antibody with the complete Fc region was constructed as isotype IgG1, IgG2 and IgG4, respectively to assess effector functions, including antibody-dependent killing of S. aureus. The biological activity of the humanized antibody designated hUK-66 was analysed in vitro with purified human PMNs and whole blood samples taken from healthy donors and patients at high risk of S. aureus infections, such as those with diabetes, end-stage renal disease, or artery occlusive disease (AOD). Results of the in vitro studies show, that hUK-66 was effective in antibody-dependent killing of S. aureus in blood from both healthy controls and patients vulnerable to S. aureus infections. Moreover, the biological activity of hUK-66 and hUK-66 combined with a humanized anti-alpha-toxin antibody (hUK-tox) was investigated in vivo using a mouse pneumonia model. The in vivo results revealed the therapeutic efficacy of hUK-66 and the antibody combination of hUK-66 and hUK-tox to prevent staphylococcal induced pneumonia in a prophylactic set up. Based on the experimental data, hUK-66 represents a promising candidate for an antibody-based therapy against antibiotic resistant MRSA. N2 - Staphylococcus aureus ist ein bedeutender nosokomialer Erreger, der eine Vielzahl von Infektionen im Menschen verursacht. Besonders Krankheiten, die durch Methicillin resistente S. aureus (MRSA) verursacht werden, sind mit einer erhöhten Morbidität, einer höheren Sterblichkeitsrate und hohen medizinischen Kosten verbunden. Seine besondere medizinische Bedeutung erlangte S. aureus durch die Ausbildung von Resistenzen gegen eine Vielzahl von Antibiotika und seiner Fähigkeit auch gegen neu entwickelte Antibiotika schnell Resistenzmechanismen auszubilden. Aus diesem Grund, ist die Entwicklung von neuen Therapieansätzen von besonderer Bedeutung, um die entstandene Lücke für eine effektive MRSA-Therapie zu schließen. In dieser Arbeit wurde ein humanisierter monoklonaler Antikörper entwickelt und charakterisiert, der spezifisch an das „immunodominant staphylococcal antigen A“ (IsaA) bindet. Dieser Antiköper wurde auf Grund seiner Eigenschaft, in einem Mausmodell effektiv S. aureus abzutöten, als vielversprechender Kandidat für eine Antikörper-Therapie ausgewählt. Der murine Vorläuferantikörper wurde mittels „CDR grafting“ humanisiert und durch die Generierung von humanisierten und murinen scFv und scFv-Fc Fragmenten, die in vergleichenden Bindungsstudien getestet wurden, konnte der Erfolg der Humanisierung beurteilt werden. Im Anschluss wurde der vollständige Antikörper mit vollständig funktionaler Fc-Region in den Isotypen IgG1, IgG2 und IgG4 hergestellt. Die Funktionalität des humanisierten Antikörpers wurde in vitro mittels aufgereinigter PMNs und Blutproben von gesunden Spendern und Patienten bestimmt, die ein hohes Risiko für S. aureus Infektionen besitzen wie Diabetiker, Dialyse-Patienten und Patienten mit arterieller Verschlusskrankheit. Die Ergebnisse der in vitro-Studien zeigen, dass der anti-IsaA-Antikörper hUK-66 nicht nur S. aureus effektiv in Blutproben von gesunden Spendern abtötet, sondern auch in Blutproben von Patienten mit erhöhter Anfälligkeit für S. aureus Infektionen. Darüber hinaus wurde die biologische Aktivität des humanisierten Antikörpers gegen IsaA als Monotherapie und in Kombination mit einem humanisierten anti-alpha-Toxin-Antikörper (hUK-tox) in vivo in einem Maus Pneumonie Modell untersucht. Hierbei konnte gezeigt werden, dass die prophylaktische Verabreichung von hUK-66 sowie die Kombination von hUK-66 und hUK-tox, die Bildung einer Staphylokokken-induzierten Pneumonie mit Todesfolge signifikant senkt. KW - Staphylococcus KW - Immunotherapy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123237 ER - TY - THES A1 - Sharan, Malvika T1 - Bio-computational identification and characterization of RNA-binding proteins in bacteria T1 - Bioinformatische Identifikation und Charakterisierung von RNA-bindenden Proteinen in Bakterien N2 - RNA-binding proteins (RBPs) have been extensively studied in eukaryotes, where they post-transcriptionally regulate many cellular events including RNA transport, translation, and stability. Experimental techniques, such as cross-linking and co-purification followed by either mass spectrometry or RNA sequencing has enabled the identification and characterization of RBPs, their conserved RNA-binding domains (RBDs), and the regulatory roles of these proteins on a genome-wide scale. These developments in quantitative, high-resolution, and high-throughput screening techniques have greatly expanded our understanding of RBPs in human and yeast cells. In contrast, our knowledge of number and potential diversity of RBPs in bacteria is comparatively poor, in part due to the technical challenges associated with existing global screening approaches developed in eukaryotes. Genome- and proteome-wide screening approaches performed in silico may circumvent these technical issues to obtain a broad picture of the RNA interactome of bacteria and identify strong RBP candidates for more detailed experimental study. Here, I report APRICOT (“Analyzing Protein RNA Interaction by Combined Output Technique”), a computational pipeline for the sequence-based identification and characterization of candidate RNA-binding proteins encoded in the genomes of all domains of life using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences of an input proteome using position-specific scoring matrices and hidden Markov models of all conserved domains available in the databases and then statistically score them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them according to functionally relevant structural properties. APRICOT performed better than other existing tools for the sequence-based prediction on the known RBP data sets. The applications and adaptability of the software was demonstrated on several large bacterial RBP data sets including the complete proteome of Salmonella Typhimurium strain SL1344. APRICOT reported 1068 Salmonella proteins as RBP candidates, which were subsequently categorized using the RBDs that have been reported in both eukaryotic and bacterial proteins. A set of 131 strong RBP candidates was selected for experimental confirmation and characterization of RNA-binding activity using RNA co-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) experiments. Based on the relative abundance of transcripts across the RIP-Seq libraries, a catalogue of enriched genes was established for each candidate, which shows the RNA-binding potential of 90% of these proteins. Furthermore, the direct targets of few of these putative RBPs were validated by means of cross-linking and co-immunoprecipitation (CLIP) experiments. This thesis presents the computational pipeline APRICOT for the global screening of protein primary sequences for potential RBPs in bacteria using RBD information from all kingdoms of life. Furthermore, it provides the first bio-computational resource of putative RBPs in Salmonella, which could now be further studied for their biological and regulatory roles. The command line tool and its documentation are available at https://malvikasharan.github.io/APRICOT/. N2 - RNA-bindende Proteine (RBPs) wurden umfangreich in Eukaryoten erforscht, in denen sie viele Prozesse wie RNA-Transport, -Translation und -Stabilität post-transkriptionell regulieren. Experimentelle Methoden wie Cross-linking and Koimmunpräzipitation mit nachfolgedener Massenspektromentrie / RNA-Sequenzierung ermöglichten eine weitreichende Charakterisierung von RBPs, RNA-bindenden Domänen (RBDs) und deren regulatorischen Rollen in eukaryotischen Spezies wie Mensch und Hefe. Weitere Entwicklungen im Bereich der hochdurchsatzbasierten Screeningverfahren konnten das Verständnis von RBPs in Eukaryoten enorm erweitern. Im Gegensatz dazu ist das Wissen über die Anzahl und die potenzielle Vielfalt von RBPs in Bakterien dürftig. In der vorliegenden Arbeit präsentiere ich APRICOT, eine bioinformatische Pipeline zur sequenzbasierten Identifikation und Charakterisierung von Proteinen aller Domänen des Lebens, die auf RBD-Informationen aus experimentellen Studien aufbaut. Die Pipeline nutzt Position Specific Scoring Matrices und Hidden-MarkovModelle konservierter Domänen, um funktionelle Motive in Proteinsequenzen zu identifizieren und diese anhand von sequenzbasierter Eigenschaften statistisch zu bewerten. Anschließend identifiziert APRICOT mögliche RBPs und charakterisiert auf Basis ihrer biologischeren Eigenschaften. In Vergleichen mit ähnlichen Werkzeugen übertraf APRICOT andere Programme zur sequenzbasierten Vorhersage von RBPs. Die Anwendungsöglichkeiten und die Flexibilität der Software wird am Beispiel einiger großer RBP-Kollektionen, die auch das komplette Proteom von Salmonella Typhimurium SL1344 beinhalten, dargelegt. APRICOT identifiziert 1068 Proteine von Salmonella als RBP-Kandidaten, die anschließend unter Nutzung der bereits bekannten bakteriellen und eukaryotischen RBDs klassifiziert wurden. 131 der RBP-Kandidaten wurden zur Charakterisierung durch RNA co-immunoprecipitation followed by high-throughput sequencing (RIP-seq) ausgewählt. Basierend auf der relativen Menge an Transkripten in den RIP-seq-Bibliotheken wurde ein Katalog von angereicherten Genen erstellt, der auf eine potentielle RNA-bindende Funktion in 90% dieser Proteine hindeutet. Weiterhin wurden die Bindungstellen einiger dieser möglichen RBPs mit Cross-linking and Co-immunoprecipitation (CLIP) bestimmt. Diese Doktorarbeit beschreibt die bioinformatische Pipeline APRICOT, die ein globales Screening von RBPs in Bakterien anhand von Informationen bekannter RBDs ermöglicht. Zudem enthält sie eine Zusammenstellung aller potentieller RPS in Salmonella, die nun auf ihre biologsche Funktion hin untersucht werden können. Das Kommondozeilen-Programm und seine Dokumentation sind auf https://malvikasharan.github.io/APRICOT/ verfügbar. KW - Bioinformatics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153573 ER - TY - JOUR A1 - Hassan, Musa A. A1 - Vasquez, Juan J. A1 - Guo-Liang, Chew A1 - Meissner, Markus A1 - Siegel, T. Nicolai T1 - Comparative ribosome profiling uncovers a dominant role for translational control in \(Toxoplasma\) \(gondii\) JF - BMC Genomics N2 - Background The lytic cycle of the protozoan parasite \(Toxoplasma\) \(gondii\), which involves a brief sojourn in the extracellular space, is characterized by defined transcriptional profiles. For an obligate intracellular parasite that is shielded from the cytosolic host immune factors by a parasitophorous vacuole, the brief entry into the extracellular space is likely to exert enormous stress. Due to its role in cellular stress response, we hypothesize that translational control plays an important role in regulating gene expression in \(Toxoplasma\) during the lytic cycle. Unlike transcriptional profiles, insights into genome-wide translational profiles of \(Toxoplasma\) \(gondii\) are lacking. Methods We have performed genome-wide ribosome profiling, coupled with high throughput RNA sequencing, in intracellular and extracellular \(Toxoplasma\) \(gondii\) parasites to investigate translational control during the lytic cycle. Results Although differences in transcript abundance were mostly mirrored at the translational level, we observed significant differences in the abundance of ribosome footprints between the two parasite stages. Furthermore, our data suggest that mRNA translation in the parasite is potentially regulated by mRNA secondary structure and upstream open reading frames. Conclusion We show that most of the \(Toxoplasma\) genes that are dysregulated during the lytic cycle are translationally regulated. KW - Biology KW - Ribosome profiling KW - RNA-sequencing KW - Translation efficiency KW - Toxoplasma gondii KW - Apicomplexan Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172376 VL - 18 ER - TY - JOUR A1 - Schielmann, Marta A1 - Szweda, Piotr A1 - Gucwa, Katarzyna A1 - Kawczyński, Marcin A1 - Milewska, Maria J. A1 - Martynow, Dorota A1 - Morschhäuser, Joachim A1 - Milewski, Sławomir T1 - Transport deficiency is the molecular basis of \(Candida\) \(albicans\) resistance to antifungal oligopeptides JF - Frontiers in Microbiology N2 - Oligopeptides incorporating \(N3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against \(Candida\) \(albicans\), with minimal inhibitory concentration values in the 0.05–50 μg mL\(^{-1}\) range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of \(C. albicans\) to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98%) of those colonies did not originate from truly resistant cells. The true resistance of 2% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of \(PTR2\), \(PTR22\), or \(OPT1–3\) genes, but mutations in the \(PTR2\) gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found. KW - microbiology KW - Candida albicans KW - oligopeptides KW - resistance mechanism KW - permease KW - antifungals Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173245 VL - 8 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Othman, Eman M. A1 - Kampik, Daniel A1 - Stopper, Helga A1 - Hentschel, Ute A1 - Ziebuhr, Wilma A1 - Oelschlaeger, Tobias A. A1 - Abdelmohsen, Usama R. T1 - Marine sponge-derived Streptomyces sp SBT343 extract inhibits staphylococcal biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections. KW - medicine KW - marine sponges KW - actinomycetes KW - Streptomyces KW - staphilococci KW - biofilms KW - contact lens Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171844 VL - 8 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Resolving host-pathogen interactions by dual RNA-seq JF - PLoS Pathogens N2 - The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq” studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique. KW - Medicine KW - RNA sequencing KW - Salmonellosis KW - Transcriptome analysis KW - Gene expression KW - Bacterial pathogens KW - Salmonella KW - Host cells KW - Lysis (medicine) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171921 VL - 13 IS - 2 ER - TY - JOUR A1 - Böhm, Lena A1 - Torsin, Sanda A1 - Tint, Su Hlaing A1 - Eckstein, Marie Therese A1 - Ludwig, Tobias A1 - Pérez, J. Christian T1 - The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice JF - PLoS Pathogens N2 - Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. KW - Candida albicans KW - deletion mutagenesis KW - gastrointestinal tract KW - fungi KW - regulator genes KW - gene regulation KW - mouse models KW - fungal genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159120 VL - 13 IS - 10 ER - TY - JOUR A1 - Ashraf, Kerolos A1 - Yasrebi, Kaveh A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel effective small-molecule antibacterials against \(Enterococcus\) strains JF - Molecules N2 - \(Enterococcus\) species cause increasing numbers of infections in hospitals. They contribute to the increasing mortality rates, mostly in patients with comorbidities, who suffer from severe diseases. \(Enterococcus\) resistances against most antibiotics have been described, including novel antibiotics. Therefore, there is an ongoing demand for novel types of antibiotics that may overcome bacterial resistances. We discovered a novel class of antibiotics resulting from a simple one-pot reaction of indole and \(o\)-phthaldialdehyde. Differently substituted indolyl benzocarbazoles were yielded. Both the indole substitution and the positioning at the molecular scaffold influence the antibacterial activity towards the various strains of \(Enterococcus\) species with the highest relevance to nosocomial infections. Structure-activity relationships are discussed, and the first lead compounds were identified as also being effective in the case of a vancomycin resistance. KW - medicine KW - antibacterial activity KW - synthesis KW - derivatives KW - structure-activity KW - lead structure Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172628 VL - 22 IS - 12 ER - TY - THES A1 - Leimbach, Andreas T1 - Genomics of pathogenic and commensal \(Escherichia\) \(coli\) T1 - Genomik pathogener und kommensaler \(Escherichia\) \(coli\) N2 - High-throughput sequencing (HTS) has revolutionized bacterial genomics. Its unparalleled sensitivity has opened the door to analyzing bacterial evolution and population genomics, dispersion of mobile genetic elements (MGEs), and within-host adaptation of pathogens, such as Escherichia coli. One of the defining characteristics of intestinal pathogenic E. coli (IPEC) pathotypes is a specific repertoire of virulence factors (VFs). Many of these IPEC VFs are used as typing markers in public health laboratories to monitor outbreaks and guide treatment options. Instead, extraintestinal pathogenic E. coli (ExPEC) isolates are genotypically diverse and harbor a varied set of VFs -- the majority of which also function as fitness factors (FFs) for gastrointestinal colonization. The aim of this thesis was the genomic characterization of pathogenic and commensal E. coli with respect to their virulence- and antibiotic resistance-associated gene content as well as phylogenetic background. In order to conduct the comparative analyses, I created a database of E. coli VFs, ecoli_VF_collection, with a focus on ExPEC virulence-associated proteins (Leimbach, 2016b). Furthermore, I wrote a suite of scripts and pipelines, bac-genomics-scripts, that are useful for bacterial genomics (Leimbach, 2016a). This compilation includes tools for assembly and annotation as well as comparative genomics analyses, like multi-locus sequence typing (MLST), assignment of Clusters of Orthologous Groups (COG) categories, searching for protein homologs, detection of genomic regions of difference (RODs), and calculating pan-genome-wide association statistics. Using these tools we were able to determine the prevalence of 18 autotransporters (ATs) in a large, phylogenetically heterogeneous strain panel and demonstrate that many AT proteins are not associated with E. coli pathotypes. According to multivariate analyses and statistics the distribution of AT variants is instead significantly dependent on phylogenetic lineages. As a consequence, ATs are not suitable to serve as pathotype markers (Zude et al., 2014). During the German Shiga toxin-producing E. coli (STEC) outbreak in 2011, the largest to date, we were one of the teams capable of analyzing the genomic features of two isolates. Based on MLST and detection of orthologous proteins to known E. coli reference genomes the close phylogenetic relationship and overall genome similarity to enteroaggregative E. coli (EAEC) 55989 was revealed. In particular, we identified VFs of both STEC and EAEC pathotypes, most importantly the prophage-encoded Shiga toxin (Stx) and the pAA-type plasmid harboring aggregative adherence fimbriae. As a result, we could show that the epidemic was caused by an unusual hybrid pathotype of the O104:H4 serotype. Moreover, we detected the basis of the antibiotic multi-resistant phenotype on an extended-spectrum beta-lactamase (ESBL) plasmid through comparisons to reference plasmids. With this information we proposed an evolutionary horizontal gene transfer (HGT) model for the possible emergence of the pathogen (Brzuszkiewicz et al., 2011). Similarly to ExPEC, E. coli isolates of bovine mastitis are genotypically and phenotypically highly diverse and many studies struggled to determine a positive association of putative VFs. Instead the general E. coli pathogen-associated molecular pattern (PAMP), lipopolysaccharide (LPS), is implicated as a deciding factor for intramammary inflammation. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype was proposed presumably encompassing strains more adapted to elicit bovine mastitis with virulence traits differentiating them from commensals. We sequenced eight E. coli isolates from udder serous exudate and six fecal commensals (Leimbach et al., 2016). Two mastitis isolate genomes were closed to a finished-grade quality (Leimbach et al., 2015). The genomic sequence of mastitis-associated E. coli (MAEC) strain 1303 was used to elucidate the biosynthesis gene cluster of its O70 LPS O-antigen. We analyzed the phylogenetic genealogy of our strain panel plus eleven bovine-associated E. coli reference strains and found that commensal or MAEC could not be unambiguously allocated to specific phylogroups within a core genome tree of reference E. coli. A thorough gene content analysis could not identify functional convergence of either commensal or MAEC, instead both have only very few gene families enriched in either pathotype. Most importantly, gene content and ecoli_VF_collection analyses showed that no virulence determinants are significantly associated with MAEC in comparison to bovine fecal commensals, disproving the MPEC hypothesis. The genetic repertoire of bovine-associated E. coli, again, is dominated by phylogenetic background. This is also mostly the case for large virulence-associated E. coli gene cluster previously associated with mastitis. Correspondingly, MAEC are facultative and opportunistic pathogens recruited from the bovine commensal gastrointestinal microbiota (Leimbach et al., 2017). Thus, E. coli mastitis should be prevented rather than treated, as antibiotics and vaccines have not proven effective. Although traditional E. coli pathotypes serve a purpose for diagnostics and treatment, it is clear that the current typing system is an oversimplification of E. coli's genomic plasticity. Whole genome sequencing (WGS) revealed many nuances of pathogenic E. coli, including emerging hybrid or heteropathogenic pathotypes. Diagnostic and public health microbiology need to embrace the future by implementing HTS techniques to target patient care and infection control more efficiently. N2 - Eines der definierenden Charakteristika intestinal pathogener E. coli (IPEC) Pathotypen ist ein spezifisches Repertoire an Virulenzfaktoren (VFs). Viele dieser IPEC VFs werden als Typisierungsmarker benutzt. Stattdessen sind Isolate extraintestinal pathogener E. coli (ExPEC) genotypisch vielfältig und beherbergen verschiedenartige VF Sets, welche in der Mehrheit auch als Fitnessfaktoren (FFs) für die gastrointestinale Kolonialisierung fungieren. Das Ziel dieser Dissertation war die genomische Charakterisierung pathogener und kommensaler E. coli in Bezug auf ihren Virulenz- und Antibiotikaresistenz-assoziierten Gengehalt sowie ihre phylogenetische Abstammung. Als Voraussetzung für die vergleichenden Analysen erstellte ich eine E. coli VF-Datenbank, ecoli_VF_collection, mit Fokus auf Virulenz-assoziierte Proteine von ExPEC (Leimbach, 2016b). Darüber hinaus programmierte ich mehrere Skripte und Pipelines zur Anwendung in der bakteriellen Genomik, bac-genomics-scripts (Leimbach, 2016a). Diese Sammlung beinhaltet Tools zur Unterstützung von Assemblierung und Annotation sowie komparativer Genomanalysen, wie Multilokus-Sequenztypisierung (MLST), Zuweisung von Clusters of Orthologous Groups (COG) Kategorien, Suche nach homologen Proteinen, Identifizierung von genomisch unterschiedlichen Regionen (RODs) und Berechnung Pan-genomweiter Assoziationsstatistiken. Mithilfe dieser Tools konnten wir die Prävalenz von 18 Autotransportern (ATs) in einer großen, phylogenetisch heterogenen Stammsammlung bestimmen und nachweisen, dass viele AT-Proteine nicht mit E. coli Pathotypen assoziiert sind. Multivariate Analysen und Statistik legten offen, dass die Verteilung von AT-Varianten vielmehr signifikant von phylogenetischen Abstammungslinien abhängt. Deshalb sind ATs nicht als Marker für Pathotypen geeignet (Zude et al., 2014). Während des bislang größten Ausbruchs von Shiga-Toxin-produzierenden E. coli (STEC) im Jahre 2011 in Deutschland waren wir eines der Teams, welches die genomischen Eigenschaften zweier Isolate analysieren konnte. Basierend auf MLST und Detektion orthologer Proteine zu bekannten E. coli Referenzgenomen konnte ihre enge phylogenetische Verwandschaft und Ähnlichkeit des gesamten Genoms zum enteroaggregativen E. coli (EAEC) 55989 aufgedeckt werden. Im Detail identifizierten wir VFs von STEC und EAEC Pathotypen, vor allem das Prophagen-kodierte Shiga-Toxin (Stx) und ein Plasmid des pAA-Typs kodierend für aggregative Adhärenz-Fimbrien. Die Epidemie wurde demnach durch einen ungewöhnlichen Hybrid-Pathotyp vom O104:H4 Serotyp verursacht. Zusätzlich identifizierten wir die Grundlage für den multiresistenten Phänotyp dieser Ausbruchsstämme auf einem Extended-Spektrum-beta-Laktamase (ESBL) Plasmid über Vergleiche mit Referenzplasmiden. Mit diesen Informationen konnten wir ein horizontales Gentransfer-Modell (HGT) zum Auftreten dieses Pathogenen vorschlagen (Brzuszkiewicz et al., 2011). Ähnlich zu ExPEC sind E. coli Isolate boviner Mastitiden genotypisch und phänotypisch sehr divers, und viele Studien scheiterten am Versuch eine positive Assoziation vermeintlicher VFs nachzuweisen. Stattdessen gilt Lipopolysaccharid (LPS) als entscheidender Faktor zur intramammären Entzündung. Gleichwohl wurde ein mammärer pathogener E. coli (MPEC) Pathotyp vorgeschlagen, der mutmaßlich Stämme umfasst, welche eher geeignet sind eine bovine Mastitis auszulösen und über Virulenz-Merkmale von Kommensalen abgegrenzt werden können. Wir sequenzierten acht E. coli Isolate aus serösem Eutersekret und sechs fäkale Kommensale (Leimbach et al., 2016). Bei zwei Mastitisisolaten wurden die Genome vollständig geschlossen (Leimbach et al., 2015). Anhand der genomischen Sequenz des Mastitis-assoziierten E. coli (MAEC) Stamms 1303 wurde das Gencluster zur Biosynthese seines O70 LPS O-Antigens aufgeklärt. Wir analysierten die phylogenetische Abstammung unserer Stammsammlung plus elf bovin-assoziierter E. coli Referenzstämme, aber konnten weder MAEC noch Kommensale bestimmten Phylogruppen innerhalb eines Core-Genom Stammbaums aus Referenz-E. coli eindeutig zuordnen. Eine ausführliche Gengehalt-Analyse konnte keine funktionelle Konvergenz innerhalb von Kommensalen oder MAEC identifizieren. Stattdessen besitzen beide nur sehr wenige Genfamilien, die bevorzugt in einer der beiden Pathotypen vorkommen. Weder eine Gengehalt- noch eine ecoli_VF_collection-Analyse konnte zeigen, dass eine signifikante Assoziation von bestimmten Virulenzfaktoren mit MAEC, im Vergleich zu bovinen fäkalen Kommensalen, besteht. Damit wurde die MPEC Hypothese widerlegt. Auch das genetische Repertoire von Rinder-assoziierten E. coli wird durch die phylogenetische Abstammung bestimmt. Dies ist überwiegend auch bei großen Virulenz-assoziierten Genclustern der Fall, die bisher mit Mastitis in Verbindung gebracht wurden. Dementsprechend sind MAEC fakultative und opportunistische Pathogene, die ihren Ursprung als Kommensale in der bovinen gastrointestinalen Mikrobiota haben (Leimbach et al., 2017). Obwohl traditionelle E. coli Pathotypen in der Diagnostik und Behandlung einen Zweck erfüllen, ist es offensichtlich, dass das derzeitige Typisierungs-System die genomische Plastizität von E. coli zu sehr vereinfacht. Die Gesamtgenom-Sequenzierung (WGS) deckte viele Nuancen pathogener E. coli auf, einschließlich entstehender hybrider oder heteropathogener Pathotypen. Diagnostische und medizinische Mikrobiologie müssen einen Schritt in Richtung Zukunft gehen und HTS-Technologien anwenden, um Patientenversorgung und Infektionskontrolle effizienter zu unterstützen. KW - Escherichia coli KW - Autotransporter KW - STEC KW - Bovine Mastitis KW - high-throughput sequencing KW - virulence factors KW - pathotypes KW - phylogeny KW - ecoli_VF_collection KW - bac-genomics-scripts KW - autotransporter KW - entero-aggregative-haemorrhagic Escherichia coli (EAHEC) KW - mastitis-associated Escherichia coli (MAEC) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154539 ER - TY - JOUR A1 - García-Betancur, Juan-Carlos A1 - Goñi-Moreno, Angel A1 - Horger, Thomas A1 - Schott, Melanie A1 - Sharan, Malvika A1 - Eikmeier, Julian A1 - Wohlmuth, Barbara A1 - Zernecke, Alma A1 - Ohlsen, Knut A1 - Kuttler, Christina A1 - Lopez, Daniel T1 - Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus JF - eLife N2 - A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. KW - Staphylococcus aureus KW - infection KW - cell differentiation KW - pathogenic bacteria Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170346 VL - 6 IS - e28023 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER - TY - JOUR A1 - Mielich-Süss, Benjamin A1 - Wagner, Rabea M. A1 - Mietrach, Nicole A1 - Hertlein, Tobias A1 - Marincola, Gabriella A1 - Ohlsen, Knut A1 - Geibel, Sebastian A1 - Lopez, Daniel T1 - Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus JF - PLoS Pathogens N2 - Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen. KW - flotillin KW - scaffold protein KW - Staphylococcus aureus KW - type VII secretion system Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170035 VL - 13 IS - 11 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER - TY - JOUR A1 - Sharan, Malvika A1 - Förstner, Konrad U. A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins JF - Nucleic Acids Research N2 - RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. KW - RNA-binding proteins KW - identification KW - characterization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157963 VL - 45 IS - 11 ER - TY - JOUR A1 - Heidrich, Nadja A1 - Bauriedl, Saskia A1 - Barquist, Lars A1 - Li, Lei A1 - Schoen, Christoph A1 - Vogel, Jörg T1 - The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq JF - Nucleic Acids Research N2 - Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx. KW - RNA KW - Neisseria meningitidis KW - dRNA-seq KW - transcriptome KW - RNA chaperone Hfq Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170828 VL - 45 IS - 10 ER - TY - JOUR A1 - Lavysh, Daria A1 - Sokolova, Maria A1 - Slashcheva, Marina A1 - Förstner, Konrad U. A1 - Severinov, Konstantin T1 - Transcription profiling of "bacillus subtilis" cells infected with AR9, a giant phage encoding two multisubunit RNA polymerases JF - mBio N2 - Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. KW - Bacteriaophage AR9 KW - Transcription profiling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181810 VL - 8 IS - 1 ER - TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - JOUR A1 - Dingemans, Josef A1 - Monsieurs, Pieter A1 - Yu, Sung-Huan A1 - Crabbé, Aurélie A1 - Förstner, Konrad U. A1 - Malfroot, Anne A1 - Cornelis, Pierre A1 - Van Houdt, Rob T1 - Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung JF - mBio N2 - Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. KW - biology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165821 VL - 7 IS - 4 ER - TY - JOUR A1 - Fröhlich, Kathrin S. A1 - Haneke, Katharina A1 - Papenfort, Kai A1 - Vogel, Jörg T1 - The target spectrum of SdsR small RNA in Salmonella JF - Nucleic Acids Research N2 - Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these ‘core sRNAs’ of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σ\(^{S}\) and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria. KW - sRNA KW - Salmonella enterica KW - SdsR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175365 VL - 44 IS - 21 ER - TY - JOUR A1 - Wheeler, Nicole E. A1 - Barquist, Lars A1 - Kingsley, Robert A. A1 - Gardner, Paul P. T1 - A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes JF - Bioinformatics N2 - Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predi cting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. KW - Host adaptation KW - Salmonella-enteritidis KW - Sequence identity KW - Rapid evolution KW - Variants KW - Cystic-fibriosis KW - Strains KW - Pathogenicity KW - Typhimurium KW - Yersinia Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186502 VL - 32 IS - 23 ER - TY - THES A1 - Hagmann [geb. Kischkies], Laura Violetta T1 - Stringent response regulation and its impact on ex vivo survival in the commensal pathogen \(Neisseria\) \(meningitidis\) T1 - Regulation der stringenten Kontrolle und ihre Auswirkungen auf das ex vivo Überleben des kommensalen Erregers \(Neisseria\) \(meningitidis\) N2 - Neisseria meningitidis is a commensal bacterium which sometimes causes serious disease in humans. Recent studies in numerous human pathogenic bacteria have shown that the stringent response contributes to bacterial virulence. Therefore, this study analyzed the regulation of the stringent response in meningococci and in particular of RelA as well as its contribution to ex vivo fitness in a strain- and condition- dependent manner by using the carriage strain α522 and the hyperinvasive strain MC58 in different in vitro and ex vivo conditions. Growth experiments revealed that both wild-type strains were almost indistinguishable in their ex vivo phenotypes. However, quantitative real time PCR (qRT-PCR) found differences in the gene expression of relA between both strains. Furthermore, in contrast to the MC58 RelA mutant strain α522 deficient in RelA was unable to survive in human whole blood, although both strains showed the same ex vivo phenotypes in saliva and cerebrospinal fluid. Moreover, strain α522 was depended on a short non-coding AT-rich repeat element (ATRrelA) in the promoter region of relA to survive in human blood. Furthermore, cell culture experiments with human epithelial cells revealed that in both strains the deletion of relA resulted in a significantly decreased invasion rate while not significantly affecting adhesion. In order to better understand the conditional lethality of the relA deletion, computational and experimental analyses were carried out to unravel differences in amino acid biosynthetic pathways between both strains. Whereas strain MC58 is able to synthesize all 20 amino acids, strain α522 has an auxotrophy for cysteine and glutamine. In addition, the in vitro growth experiments found that RelA is required for growth in the absence of external amino acids in both strains. Furthermore, the mutant strain MC58 harboring an ATRrelA in its relA promoter region showed improved growth in minimal medium supplemented with L-cysteine and/or L-glutamine compared to the wild-type strain. Contrary, in strain α522 no differences between the wild-type and the ATRrelA deletion mutant were observed. Together this indicates that ATRrelA interferes with the complex regulatory interplay between the stringent response pathway and L-cysteine as well as L-glutamine metabolism. It further suggests that meningococcal virulence is linked to relA in a strain- and condition- depended manner. In conclusion, this work highlighted the role of the stringent response and of non-coding regulatory elements for bacterial virulence and indicates that virulence might be related to the way how meningococci accomplish growth within the host environments. N2 - Neisseria meningitidis ist ein kommensal lebendes, fakultativ pathogenes Bakterium, welches unter nicht vollständig verstandenen Umständen lebensbedrohliche Krankheitsbilder bei Menschen verursacht. Aktuelle Studien haben gezeigt, dass die stringente Antwort einen Einfluss auf die bakterielle Virulenz haben kann. Aus diesem Grund untersucht diese Arbeit die Regulation der stringenten Antwort, insbesondere die Rolle von RelA, sowie den Einfluss der stringenten Antwort auf die Ex-vivo-Fitness der Meningokokken. Die Ergebnisse wurden für den Trägerstamm α522 und den hyperinvasiven Stamm MC58 erhoben und miteinander verglichen. Wachstumsexperimente zeigten, dass sich beide Wildtyp-Stämme in ihren Ex-vivo-Phänotypen nicht unterscheiden. Jedoch wurden mittels quantitativer Echtzeit-PCR (qRT-PCR) Unterschiede zwischen beiden Stämmen in der Genexpression von relA gefunden. Zudem war die α522 relA Mutante im Gegensatz zu der MC58 relA Mutante nicht in der Lage, in menschlichem Vollblut zu überleben. Allerdings zeigten in Saliva und Liquor beide Stämme den gleichen Phänotyp. Außerdem war der Trägerstamm auf eine kurze, nicht-codierende AT-reiche Region (ATRrelA) in der Promotorregion von relA angewiesen, um im menschlichen Blut überleben zu können. Darüber hinaus zeigten Zellkulturexperimente mit humanen Epithelzellen, dass die Deletion relA die Invasionsrate in beiden Stämmen signifikant verringerte, obwohl die Adhäsionsrate durch die Deletion unbeeinflusst blieb. Um besser verstehen zu können, weshalb die Deletion von relA unter bestimmten Bedingungen letal ist, wurden mit In-silico- und experimentellen Analysen nach Unterschieden in den Aminosäurebiosynthesewegen beider Stämme gesucht. Es zeigte sich, dass Stamm MC58 in der Lage ist alle 20 Aminosäuren zu synthetisieren, während Stamm α522 eine Auxotrophie für Cystein und Glutamin aufweist. Ferner zeigten die In-vitro-Wachstumsversuche, dass RelA bei Aminosäuremangel essentiell für beide Stämme ist. Darüber hinaus zeigte eine MC58 Mutante mit einer ATRrelA –Kopie in der relA Promotorregion ein im Vergleich zum Wildtyp-Stamm verbessertes Wachstum in mit L-Cystein und/oder L-Glutamin angereichertem Minimalmedium. Gegensätzlich dazu zeigte der Stamm α522 keine Unterschiede im Wachstum zwischen dem Wildtyp und einer ATRrelA Deletions-Mutante. Dies deutet darauf hin, dass ATRrelA an dem komplexen regulatorischen Zusammenspiel der stringenten Antwort und dem L-Cystein- beziehungsweise dem L-Glutamin-Metabolismus beteiligt ist. Es lässt sich vermuten, dass RelA zu der Virulenz von Meningokokken in einer stamm- und umgebungsspezifischen Weise beiträgt. Abschließend hebt diese Arbeit die Rolle von kleinen regulatorischen Elementen für die bakterielle Virulenz hervor und postuliert, dass die Virulenz der Meningokokken auf ihrer Fähigkeit basiert, sich der durch den Wirt gegebenen Umgebung anzupassen. KW - Neisseria meningitidis KW - Stringente Kontrolle KW - Virulenzfaktor KW - Genregulation KW - Transposon KW - Stringent response KW - RelA KW - MITE KW - Stringente Antwort Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144352 ER - TY - INPR A1 - Bartfeld, Sina T1 - Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids T2 - Developmental Biology N2 - Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut- microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes. KW - gastrointestinal disease KW - salmonella KW - microbiota KW - inflammatory bowel disease KW - organoid culture KW - helicobacter KW - rotavirus KW - norovirus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138788 UR - http://www.sciencedirect.com/science/article/pii/S0012160616304602 SN - 0012-1606 N1 - This is the accepted version of the following article: Bartfeld, Sina, Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids, Developmental Biology, 2016, 420, 2, 262-270. http://dx.doi.org/10.1016/j.ydbio.2016.09.014 ER - TY - JOUR A1 - Jiang, Yuxiang A1 - Oron, Tal Ronnen A1 - Clark, Wyatt T. A1 - Bankapur, Asma R. A1 - D'Andrea, Daniel A1 - Lepore, Rosalba A1 - Funk, Christopher S. A1 - Kahanda, Indika A1 - Verspoor, Karin M. A1 - Ben-Hur, Asa A1 - Koo, Da Chen Emily A1 - Penfold-Brown, Duncan A1 - Shasha, Dennis A1 - Youngs, Noah A1 - Bonneau, Richard A1 - Lin, Alexandra A1 - Sahraeian, Sayed M. E. A1 - Martelli, Pier Luigi A1 - Profiti, Giuseppe A1 - Casadio, Rita A1 - Cao, Renzhi A1 - Zhong, Zhaolong A1 - Cheng, Jianlin A1 - Altenhoff, Adrian A1 - Skunca, Nives A1 - Dessimoz, Christophe A1 - Dogan, Tunca A1 - Hakala, Kai A1 - Kaewphan, Suwisa A1 - Mehryary, Farrokh A1 - Salakoski, Tapio A1 - Ginter, Filip A1 - Fang, Hai A1 - Smithers, Ben A1 - Oates, Matt A1 - Gough, Julian A1 - Törönen, Petri A1 - Koskinen, Patrik A1 - Holm, Liisa A1 - Chen, Ching-Tai A1 - Hsu, Wen-Lian A1 - Bryson, Kevin A1 - Cozzetto, Domenico A1 - Minneci, Federico A1 - Jones, David T. A1 - Chapman, Samuel A1 - BKC, Dukka A1 - Khan, Ishita K. A1 - Kihara, Daisuke A1 - Ofer, Dan A1 - Rappoport, Nadav A1 - Stern, Amos A1 - Cibrian-Uhalte, Elena A1 - Denny, Paul A1 - Foulger, Rebecca E. A1 - Hieta, Reija A1 - Legge, Duncan A1 - Lovering, Ruth C. A1 - Magrane, Michele A1 - Melidoni, Anna N. A1 - Mutowo-Meullenet, Prudence A1 - Pichler, Klemens A1 - Shypitsyna, Aleksandra A1 - Li, Biao A1 - Zakeri, Pooya A1 - ElShal, Sarah A1 - Tranchevent, Léon-Charles A1 - Das, Sayoni A1 - Dawson, Natalie L. A1 - Lee, David A1 - Lees, Jonathan G. A1 - Sillitoe, Ian A1 - Bhat, Prajwal A1 - Nepusz, Tamás A1 - Romero, Alfonso E. A1 - Sasidharan, Rajkumar A1 - Yang, Haixuan A1 - Paccanaro, Alberto A1 - Gillis, Jesse A1 - Sedeño-Cortés, Adriana E. A1 - Pavlidis, Paul A1 - Feng, Shou A1 - Cejuela, Juan M. A1 - Goldberg, Tatyana A1 - Hamp, Tobias A1 - Richter, Lothar A1 - Salamov, Asaf A1 - Gabaldon, Toni A1 - Marcet-Houben, Marina A1 - Supek, Fran A1 - Gong, Qingtian A1 - Ning, Wei A1 - Zhou, Yuanpeng A1 - Tian, Weidong A1 - Falda, Marco A1 - Fontana, Paolo A1 - Lavezzo, Enrico A1 - Toppo, Stefano A1 - Ferrari, Carlo A1 - Giollo, Manuel A1 - Piovesan, Damiano A1 - Tosatto, Silvio C. E. A1 - del Pozo, Angela A1 - Fernández, José M. A1 - Maietta, Paolo A1 - Valencia, Alfonso A1 - Tress, Michael L. A1 - Benso, Alfredo A1 - Di Carlo, Stefano A1 - Politano, Gianfranco A1 - Savino, Alessandro A1 - Rehman, Hafeez Ur A1 - Re, Matteo A1 - Mesiti, Marco A1 - Valentini, Giorgio A1 - Bargsten, Joachim W. A1 - van Dijk, Aalt D. J. A1 - Gemovic, Branislava A1 - Glisic, Sanja A1 - Perovic, Vladmir A1 - Veljkovic, Veljko A1 - Almeida-e-Silva, Danillo C. A1 - Vencio, Ricardo Z. N. A1 - Sharan, Malvika A1 - Vogel, Jörg A1 - Kansakar, Lakesh A1 - Zhang, Shanshan A1 - Vucetic, Slobodan A1 - Wang, Zheng A1 - Sternberg, Michael J. E. A1 - Wass, Mark N. A1 - Huntley, Rachael P. A1 - Martin, Maria J. A1 - O'Donovan, Claire A1 - Robinson, Peter N. A1 - Moreau, Yves A1 - Tramontano, Anna A1 - Babbitt, Patricia C. A1 - Brenner, Steven E. A1 - Linial, Michal A1 - Orengo, Christine A. A1 - Rost, Burkhard A1 - Greene, Casey S. A1 - Mooney, Sean D. A1 - Friedberg, Iddo A1 - Radivojac, Predrag A1 - Veljkovic, Nevena T1 - An expanded evaluation of protein function prediction methods shows an improvement in accuracy JF - Genome Biology N2 - Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. KW - Protein function prediction KW - Disease gene prioritization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166293 VL - 17 IS - 184 ER -