TY - THES A1 - Zheng, Peilin T1 - Ptpn22 silencing in the NOD model of type 1 diabetes indicates the human susceptibility allele of PTPN22 is a gain-of-function variant T1 - Ptpn22 knockdown im NOD Modell für Diabetes Typ 1 belegt einen Aktivitätsgewinn der humanen Krankheitsvariante N2 - PTPN22 encodes the lymphoid tyrosine phosphatase Lyp that can dephosphorylate Lck, ZAP-70 and Fyn to attenuate TCR signaling. A single-nucleotide polymorphism (C1858T) causes a substitution from arginine (R) to tryptophan (W) at 620 residue (R620W). Lyp-620W has been confirmed as a susceptible allele in multiple autoimmune diseases, including type 1 diabetes (T1D). Several independent studies proposed that the disease-associated allele is a gain-of-function variant. However, a recent report found that in human cells and a knockin mouse containing the R620W homolog that Ptpn22 protein degradation is accelerated, indicating Lyp-620W is a loss-of-function variant. Whether Lyp R620W is a gain- or loss-of-function variant remains controversial. To resolve this issue, we generated two lines (P2 and P4) of nonobese diabetic (NOD) mice in which Ptpn22 can be inducibly silenced by RNAi. We found long term silencing of Ptpn22 increased spleen cellularity and regulatory T (Treg) cell numbers, replicating the effect of gene deletion reported in the knockout (KO) B6 mice. Notably, Ptpn22 silencing also increased the reactivity and apoptotic behavior of B lymphocytes, which is consistent with the reduced reactivity and apoptosis of human B cells carrying the alleged gain-of-function PTPN22 allele. Furthermore, loss of Ptpn22 protected P2 KD mice from spontaneous and Cyclophosphamide (CY) induced diabetes. Our data support the notion that Lyp-620W is a gain-of-function variant. Moreover, Lyp may be a valuable target for the treatment of autoimmune diseases. N2 - PTPN22 kodiert die lymphoid tyrosine phosphatase Lyp, die Lck, ZAP-70 und Fyn dephosphorilieren kann, um T Zell Rezeptor Signale zu vermindern. Ein Polymorphismus (C1858T) verursacht einen Aminosäurenaustausch auf Position 620 von Arginin zu Tryptophan (R620W). Lyp-620W erhöht das Risiko einer Vielfalt von Autoimmunerkrankungen, darunter auch Diabetes Typ 1 (T1D). Mehrere Studien haben belegt, dass dieses Krankheitsallel die Funktion von Lyp verstärkt. Eine neuere Studie hat andererseits gezeigt, dass die R620W Variante schneller degradiert wird, was bedeuten würde, dass das C1858T Allel einen Funktionsverlust verursachen könnte. Ob Lyp R620W die Funktion dieser Phosphatase erhöht oder mindert bleibt demnach bis jetzt ungewiss. Um diese Frage zu klären haben wir zwei transgene Mauslinien (P2 und P4) im diabetischen Hintergrund der NOD Maus generiert, in denen Ptpn22 auf induzierbare Weise durch RNAi gehemmt werden kann. Unsere Ergebnisse zeigen, dass die langfristige Hemmung von Ptpn22 zu einer Zunahme der Milzzellularität und der Anzahl regulatorischer T Zellen führt, was dem Phänotyp des Ptpn22 knockout im B6 Hintergrund entspricht. Bemerkenswert ist, dass die Hemmung von Ptpn22 auch zu einer Zunahme der Reaktivität und des apoptotischen Verhaltens von B Lymphozyten führt, also dem entgegengesetzten Phänotypen, der in menschlichen B Zellen beobachtet wurde, die das Krankheitsallel exprimierten. Zusätzlich konnte die Ptpn22 Inhibierung NOD Mäuse vor spontanem und Cyclophosphamid-induziertem Diabetes schützen. Unsere Daten unterstützen also die Hypothese, dass Lyp-620W eine stärkere Aktivität vorweist. Dies würde auch bedeuten, dass Ptpn22 möglicherweise zu therapeutischen Zwecken inhibiert werden könnte, um Autoimmunerkrankungen zu bekämpfen. KW - Diabetes mellitus KW - Typ 1 KW - Genexpression KW - Ptpn22 KW - Diabetes Typ 1 KW - Type 1 diabetes KW - PTPN22 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73869 ER - TY - THES A1 - Hofmann, Sebastian T1 - Studies on the function and regulation of CD84, GPVI and Orai2 in genetically modified mice T1 - Untersuchungen zur Funktion und Regulation von CD84, GPVI und Orai2 in genetisch veränderten Mäusen N2 - Platelet activation and aggregation at sites of vascular injury are essential processes to limit blood loss but they also contribute to arterial thrombosis, which can lead to myocardial infarction and stroke. Stable thrombus formation requires a series of events involving platelet receptors which contribute to adhesion, activation and aggregation of platelets. Regulation of receptor expression by (metallo-)proteinases has been described for several platelet receptors, but the molecular mechanisms are ill-defined. The signaling lymphocyte activation molecule (SLAM) family member CD84 is expressed in immune cells and platelets, however its role in platelet physiology was unclear. In this thesis, CD84 deficient mice were generated and analyzed. In well established in vitro and in vivo assays testing platelet function and thrombus formation, CD84 deficient mice displayed phenotypes indistinguishable from wild-type controls. It was concluded that CD84 in platelets does not function as modulator of thrombus formation, but rather has other functions. In line with this, in the second part of this thesis, a novel regulation mechanism for platelet CD84 was discovered and elucidated. Upon platelet activation, the N-terminus of CD84 was found to be cleaved exclusively by the a disintegrin and metalloproteinase 10 (ADAM10), whereas the intracellular part was cleaved by calpain. In addition, regulation of the platelet activating collagen receptor glycoprotein VI (GPVI) was studied and it was shown that GPVI is in contrast to CD84 differentially regulated by ADAM10 and ADAM17. A novel role of CD84 under pathophysiological conditions was revealed as CD84 deficient mice were protected from ischemic stroke in the model of transient middle cerebral artery occlusion and this protection was based on the lack of CD84 in T cells. Ca2+ is an essential second messenger that facilitates activation of platelets and diverse functions in different eukaryotic cell types. Store-operated Ca2+ entry (SOCE) represents the major mechanism leading to rise in intracellular Ca2+ concentration in non-excitable cells. The Ca2+ sensor STIM1 (stromal interaction molecule 1) and the SOC channel subunit protein Orai1 are established mediators of SOCE in platelets. STIM2 is the major STIM isoform in neurons, but the role of the SOC channel subunit protein Orai2 in platelets and neurons has remained elusive. In the third part of this thesis, Orai2 deficient mice were generated and analyzed. Orai2 was dispensable for platelet function, however, Orai2 deficient mice were protected from ischemic neurodegeneration and this phenotype was attributed to defective SOCE in neurons. N2 - Die Aktivierung und Aggregation von Blutplättchen sind wichtige Prozesse um Blutverlust nach Gefäßverletzungen zu vermeiden. Diese Prozesse spielen aber auch eine Rolle in der arteriellen Thrombose, die zu Herzinfarkt und Schlaganfall führen kann. Die Bildung stabiler Thromben setzt eine Reihe von Vorgängen voraus, an denen Blutplättchenrezeptoren beteiligt sind, welche zur Adhäsion, Aktivierung und Aggregation der Blutplättchen beitragen. Für einige Blutplättchenrezeptoren wurde eine Regulation der Expression durch (Metallo )Proteinasen beschrieben, jedoch sind die molekularen Mechanismen weitgehend unbekannt. CD84, ein Protein das zur signaling lymphocyte activation molecule (SLAM) Familie gehört, wird sowohl in Immunzellen als auch in Blutplättchen exprimiert. Jedoch war die Rolle von CD84 in der Physiologie der Blutplättchen unklar. In der vorliegenden Arbeit wurden CD84 defiziente Mäuse generiert und analysiert. In etablierten in vitro und in vivo Test, welche die Blutplättchenfunktion und Thrombusbildung untersuchen, war der Phänotyp von CD84 defizienten Mäusen unverändert gegenüber Wildtyp-Kontrollen. Es wurde die Schlussfolgerung gezogen, dass CD84 in Blutplättchen nicht als Modulator der Thrombusbildung fungiert, sondern eher andere Funktionen hat. Im Einklang damit wurde im zweiten Teil dieser Arbeit ein neuer Regulationsmechanismus entdeckt und aufgeklärt. Infolge von Blutplättchenaktivierung wurde der N-terminale Teil von CD84 ausschließlich von a disintegrin and metalloproteinase 10 (ADAM10) geschnitten, während der intrazelluläre Anteil durch Calpain prozessiert wurde. Weiterhin wurde die Regulation des Blutplättchen-aktivierenden Kollagenrezeptors Glykoprotein VI (GPVI) untersucht. Es konnte gezeigt werden, dass GPVI, im Gegensatz zu CD84, einer differenziellen Regulation durch ADAM10 und ADAM17 unterliegt. Unter pathophysiologischen Bedingungen wurde eine neue Rolle von CD84 aufgedeckt, da CD84 defiziente Mäuse vor ischämischem Schlaganfall im transient middle cerebral artery occlusion Modell geschützt waren. Dieser Schutz beruhte auf dem Fehlen von CD84 auf T Zellen. Ca2+ ist ein wichtiger sekundärer Botenstoff, der die Aktivierung von Blutplättchen ermöglicht sowie diverse Funktionen in verschiedenen eukaryotischen Zellen erfüllt. Store-operated Ca2+ entry (SOCE) stellt den Hauptmechanismus dar, der zum Anstieg der intrazellulären Ca2+ Konzentration in nicht-erregbaren Zellen führt. Der Ca2+ Sensor STIM1 (stromal interaction molecule 1) und das SOC-Kanal Protein Orai1 sind als Vermittler des SOCE in Blutplättchen bekannt. STIM2 stellt die Hauptisoform der STIM Moleküle in Neuronen dar, jedoch war die Rolle des SOC-Kanal Proteins Orai2 in Blutplättchen und Neuronen weitgehend unbekannt. Im dritten Teil dieser Arbeit wurden Orai2 defiziente Mäuse generiert und analysiert. Orai2 war nicht essentiell für die Funktion von Blutplättchen, jedoch waren Orai2 defiziente Mäuse vor ischämischer Neurodegeneration geschützt. Dieser Phänotyp wurde auf einen defekten SOCE in Neuronen zurückgeführt. KW - Thrombozyt KW - Maus KW - Genexpression KW - Metalloproteinasen KW - platelets KW - CD84 KW - Metalloproteinase KW - GPVI Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87949 ER - TY - THES A1 - Cam, Hakan T1 - The role of p53 family members in myogenic differentiation and rhabdomyosarcoma development N2 - Krebserkrankungen zeichnen sich häufig durch Störungen zellulärer Differenzierungsprozesse aus. So weisen Rhabdomyosarkome, die aus Muskelvorläuferzellen hervorgehen, Differenzierungsdefekte auf, die zur unkontrollierten Proliferation der Tumorzellen führen. Bislang ist ungeklärt, ob die Differenzierungsdefekte auf der verstärkten Expression von Inhibitoren, der defekten Funktion von Aktivatoren oder einer Kombination von beidem beruht. In dieser Arbeit wird gezeigt, dass im Unterschied zu normalen Muskelzellen RMS-Zellen verstärkt DeltaNp73, einen Pan-Inhibitor der p53-Tumorsuppressorfamilie, exprimieren. Die experimentelle Überexpression von DeltaNp73 in normalen Myoblasten blockierte die Muskeldifferenzierung und förderte in Kombination mit klassischen RMS-Onkogenen wie IGF2 oder PAX3/FKHR die maligne Transformation. Umgekehrt führte die Hemmung von DeltaNp73 durch RNAi zur Reduktion der Tumorigenität von RMS-Tumorzellen. Da DeltaNp73 als dominant-negativer Inhibitor der p53-Familie wirkt, lies die Hemmung von Differenzierungsprozessen durch DeltaNp73 vermuten, dass die p53-Familienmitglieder (p53, p63, und p73) an der Regulation der Muskeldifferenzierung beteiligt sind. Tatsächlich konnte in dieser Arbeit gezeigt werden, dass die drei p53-Familienmitglieder bei der Induktion später Differenzierungsstadien kooperieren, indem sie die Aktivität des Retinoblastoma-Proteins RB regulieren. Die Funktion von RB ist bekanntermassen sowohl für den permanenten Zellzyklusarrest als auch für die Aktivierung Muskel-spezifischer Gene notwendig. Während p53 die Proteinspiegel von RB reguliert, kontrollieren p63 und p73 den Aktivierungsgrad von RB, indem sie dessen Phoshphorylierungszustand über den Zyklin-abhängigen Kinaseinhibitor p57KIP2 modifizieren. Eine Hemmung dieser Funktionen blockiert das Differenzierungsprogramm und fördert die Tumorentstehung. Die Aktivierung zellulärer Differenzierungsprozesse stellt somit einen entscheidenden Bestandteil der Tumorsuppressoraktivität der p53-Familie dar und liefert eine Erklärung für die Häufigkeit von Mutationen im p53-Signalweg bei Rhabdomyosarkom-Patienten. N2 - Disruption of differentiation pathways is one of the hallmarks of cancer. In rhabdomyosarcoma (RMS), a human tumor arising from myogenic precursors, the muscle differentiation program is disabled resulting in uncontrolled proliferation. Whether the differentiation block is due to overexpression of inhibitors, deficient function of activators, or both remained unknown. This study shows that RMS cells but not non-neoplastic muscle cells overexpress DeltaNp73, a pan-inhibitor of the p53 family of tumor suppressor genes. Experimental overexpression of DeltaNp73 in normal muscle precursor cells inhibited myogenic differentiation and promoted malignant transformation in cooperation with the RMS oncogenes IGF2 and PAX3/FKHR. Vice versa, RNAi knockdown of DeltaNp73 reduced the tumorigenicity of established RMS tumor cells. As DeltaNp73 is a dominant-negative inhibitor of the p53 family, inhibition of differentiation by DeltaNp73 suggests that the p53 family members (p53, p63 and p73) are critically involved in myogenic differentiation control. Indeed, this study demonstrates that all three p53 family members cooperate to activate the late stages of the differentiation process by regulating the activity of the retinoblastoma protein RB. The function of RB is known to be required for both the permanent cell cycle exit and the activation of muscle-specific genes. Whereas p53 regulates RB protein levels, p63 and p73 control the activation state of RB by modifying its phosphorylation via the cyclin-dependent kinase inhibitor p57KIP2. Ablation of these p53 family functions blocks the differentiation program and promotes malignant transformation. Induction of cellular differentiation therefore contributes to the tumor suppressor activities of the p53 family and provides an explanation for the high frequency of p53 pathway alterations in rhabdomyosarcoma patients. KW - Rhabdomyosarkom KW - Muskelzelle KW - Zelldifferenzierung KW - Genexpression KW - p53 KW - p63 KW - p73 KW - myogenic differentiation KW - rhabdomyosarcoma development KW - p53 KW - p63 KW - p73 KW - myogenic differentiation KW - rhabdomyosarcoma development Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20240 ER -