TY - JOUR A1 - Zhou, Xiang A1 - Dierks, Alexander A1 - Kertels, Olivia A1 - Samnick, Samuel A1 - Kircher, Malte A1 - Buck, Andreas K. A1 - Haertle, Larissa A1 - Knorz, Sebastian A1 - Böckle, David A1 - Scheller, Lukas A1 - Messerschmidt, Janin A1 - Barakat, Mohammad A1 - Truger, Marietta A1 - Haferlach, Claudia A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, K. Martin A1 - Lapa, Constantin T1 - The link between cytogenetics/genomics and imaging patterns of relapse and progression in patients with relapsed/refractory multiple myeloma: a pilot study utilizing 18F-FDG PET/CT JF - Cancers N2 - Utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), we performed this pilot study to evaluate the link between cytogenetic/genomic markers and imaging patterns in relapsed/refractory (RR) multiple myeloma (MM). We retrospectively analyzed data of 24 patients with RRMM who were treated at our institution between November 2018 and February 2020. At the last relapse/progression, patients had been treated with a median of three (range 1–10) lines of therapy. Six (25%) patients showed FDG avid extramedullary disease without adjacency to bone. We observed significantly higher maximum standardized uptake values (SUV\(_{max}\)) in patients harboring del(17p) compared with those without del(17p) (p = 0.025). Moreover, a high SUV\(_{max}\) of >15 indicated significantly shortened progression-free survival (PFS) (p = 0.01) and overall survival (OS) (p = 0.0002). One female patient exhibited biallelic TP53 alteration, i.e., deletion and mutation, in whom an extremely high SUV\(_{max}\) of 37.88 was observed. In summary, this pilot study suggested a link between del(17p)/TP53 alteration and high SUV\(_{max}\) on 18F-FDG PET/CT in RRMM patients. Further investigations are highly warranted at this point. KW - radiogenomics KW - 18F-FDG PET/CT KW - multiple myeloma KW - relapse KW - progression KW - pattern Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211157 SN - 2072-6694 VL - 12 IS - 9 ER - TY - JOUR A1 - Haertle, Larissa A1 - Maierhofer, Anna A1 - Böck, Julia A1 - Lehnen, Harald A1 - Böttcher, Yvonne A1 - Blüher, Matthias A1 - Schorsch, Martin A1 - Potabattula, Ramya A1 - El Hajj, Nady A1 - Appenzeller, Silke A1 - Haaf, Thomas T1 - Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals JF - PLoS ONE N2 - Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals. KW - DNA methylation KW - genomic imprinting KW - polymerase chain reaction KW - blood KW - epigenetics KW - sequence alignment KW - sperm Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170433 VL - 12 IS - 8 ER - TY - JOUR A1 - Haertle, Larissa A1 - Buenache, Natalia A1 - Cuesta Hernández, Hipólito Nicolás A1 - Simicek, Michal A1 - Snaurova, Renata A1 - Rapado, Inmaculada A1 - Martinez, Nerea A1 - López-Muñoz, Nieves A1 - Sánchez-Pina, José María A1 - Munawar, Umair A1 - Han, Seungbin A1 - Ruiz-Heredia, Yanira A1 - Colmenares, Rafael A1 - Gallardo, Miguel A1 - Sanchez-Beato, Margarita A1 - Piris, Miguel Angel A1 - Samur, Mehmet Kemal A1 - Munshi, Nikhil C. A1 - Ayala, Rosa A1 - Kortüm, Klaus Martin A1 - Barrio, Santiago A1 - Martínez-López, Joaquín T1 - Genetic alterations in members of the proteasome 26S subunit, AAA-ATPase (PSMC) gene family in the light of proteasome inhibitor resistance in multiple myeloma JF - Cancers N2 - For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM. KW - Multiple Myeloma KW - drug resistance KW - proteasome inhibitors KW - immunoglobulin rearrangement KW - ATPase activity KW - PSMC2 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305013 SN - 2072-6694 VL - 15 IS - 2 ER - TY - JOUR A1 - Haertle, Larissa A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Nanda, Indrajit A1 - Lehnen, Harald A1 - Haaf, Thomas T1 - Epigenetic signatures of gestational diabetes mellitus on cord blood methylation JF - Clinical Epigenetics N2 - Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina’s 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures. KW - fetal programming KW - insulin treatment KW - DNA methylation KW - fetal cord blood KW - gestational diabetes mellitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159459 VL - 9 IS - 28 ER - TY - JOUR A1 - Da Vià, Matteo Claudio A1 - Solimando, Antonio Giovanni A1 - Garitano-Trojaola, Andoni A1 - Barrio, Santiago A1 - Munawar, Umair A1 - Strifler, Susanne A1 - Haertle, Larissa A1 - Rhodes, Nadine A1 - Vogt, Cornelia A1 - Lapa, Constantin A1 - Beilhack, Andreas A1 - Rasche, Leo A1 - Einsele, Hermann A1 - Kortüm, K. Martin T1 - CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF‐MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement JF - The Oncologist N2 - Combined MEK‐BRAF inhibition is a well‐established treatment strategy in BRAF‐mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF‐MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high‐risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KW - Multiple myeloma KW - Extramedullary disease KW - Capicua transcriptional repressor KW - Drug resistance KW - BRAF mutation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219549 VL - 25 IS - 2 ER - TY - JOUR A1 - Garitano-Trojaola, Andoni A1 - Sancho, Ana A1 - Götz, Ralph A1 - Eiring, Patrick A1 - Walz, Susanne A1 - Jetani, Hardikkumar A1 - Gil-Pulido, Jesus A1 - Da Via, Matteo Claudio A1 - Teufel, Eva A1 - Rhodes, Nadine A1 - Haertle, Larissa A1 - Arellano-Viera, Estibaliz A1 - Tibes, Raoul A1 - Rosenwald, Andreas A1 - Rasche, Leo A1 - Hudecek, Michael A1 - Sauer, Markus A1 - Groll, Jürgen A1 - Einsele, Hermann A1 - Kraus, Sabrina A1 - Kortüm, Martin K. T1 - Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia JF - Communications Biology N2 - The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML. KW - actin KW - acute myeloid leukaemia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260709 VL - 4 IS - 1 ER -