TY - JOUR A1 - Donat, Ulrike A1 - Rother, Juliane A1 - Schäfer, Simon A1 - Hess, Michael A1 - Härtl, Barbara A1 - Kober, Christina A1 - Langbein-Laugwitz, Johanna A1 - Stritzker, Jochen A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Weibel, Stephanie A1 - Szalay, Alandar A. T1 - Characterization of Metastasis Formation and Virotherapy in the Human C33A Cervical Cancer Model JF - PLoS ONE N2 - More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases. KW - metastasis KW - renal cancer KW - oncolytic viruses KW - lymph nodes KW - kidneys KW - lung and intrathoracic tumors KW - secondary lung tumors KW - cancer treatment Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119674 SN - 1932-6203 VL - 9 IS - 6 ER - TY - THES A1 - Kober, Christina T1 - Characterization of Murine GL261 Glioma Models for Oncolytic Vaccinia Virus Therapy T1 - Charakterisierung onkolytischer Vaccinia Virus Therapie in murinen Gliommodellen N2 - Glioblastoma multiforme (GBM) is one of the most frequent and malignant forms of brain cancer in adults. The prognosis is poor with a median survival time of 12-15 months. There is a broad range of alternative treatment options studied in preclinical and clinical trials for GBM. One alternative treatment option is oncolytic virotherapy, defined as the use of replication‐competent viruses that selectively infect and destroy cancer cells while leaving, non‐transformed cells unharmed. Vaccinia virus (VACV) is one favorable candidate. Although oncolytic viruses can kill tumor cells grown in vitro with high efficiency, they often exhibit reduced replication capacity in vivo suggesting that physiological aspects of the tumor microenvironment decrease the virus’ therapeutic potential. The percentage and composition of immune cells varies between cancer types and patients and is investigated as a biomarker in several studies. Making oncolytic virotherapy successful for GBM, it is necessary to understand the individual tumor biology, the interaction with the microenvironment and immune system. It was demonstrated that the attenuated VACV wild-type (wt) isolate LIVP 1.1.1 replicate and lyse the murine GL261 glioma cell line in vitro. In the following, the replication efficacy was characterized in a comparative approach in vivo. Immunocompetent C57BL/6 (wt) mice and immunodeficient mouse strains of different genetic background C57BL/6 athymic and Balb/c athymic mice were used. In addition, subcutaneous and intracranial locations were compared. The results revealed viral replication exclusively in Balb/c athymic mice with subcutaneous tumors but in none of the other models. In the following, the tumor microenvironment of the subcutaneous tumor models at the time of infection was performed. The study showed that implantation of the same tumor cells in different mouse strains resulted in a different tumor microenvironment with a distinct composition of immune cells. Highest differences were detected between immunodeficient and immunocompetent mice. The study showed major differences in the expression of MHCII with strongest expression in C57BL/6 wt and weakest in Balb/c athymic tumors. In the following, the influence of the phenotypic change associated with the upregulation of MHCII on GL261 tumor cells on viral replication was analyzed. Comparison of C57BL/6 wt and C57BL/6 IFN-γ knockout mice revealed endogenous IFN-γ levels to upregulate MHCII on GL261 tumor cells and to reduce viral replication in C57BL/6 wt mice. Analysis of single cell suspensions of tumor homogenates of C57BL/6 and Balb/c athymic mice showed that the IFN-γ-mediated anti-tumor effect was a reversible effect. Furthermore, reasons for inhibition of virus replication in orthotopic glioma models were elucidated. By immunohistochemical analysis it was shown that intratumoral amounts of Iba1+ microglia and GFAP+ astrocytes in Gl261 gliomas was independent from intratumoral VACV injection. Based on these findings virus infection in glioma, microglia and astrocytes was compared and analyzed in cell culture. In contrast to the GL261 glioma cells, replication was barely detectable in BV-2 microglia and IMA2.1 astrocytic cells. Co-culture experiments revealed that microglia compete for virus uptake in cell culture. It was further shown that BV-2 cells showed apoptotic characteristics after VACV infection while GL261 cells showed signs of necrotic cell death. Additionally, in BV-2 cells with M1-phenotype a further reduction of viral replication and inhibition of cell lysis was detected. Infection of IMA 2.1 cells was independent of the M1/M2-phenotype. Application of BV-2 microglia with M1-phenotype onto organotypic slice cultures with implanted GL261 tumors resulted in reduced infection of BV-2 cells with LIVP 1.1.1, whereas GL261 cells were significantly infected. Taken together, the analyzed GL261 tumors were imprinted by the immunologic and genetic background in which they grow. The experimental approach applied in this thesis can be used as suitable model which reflects the principles of personalized medicine In an additional project, based on gene expression data and bioinformatic analyses, the biological role and function of the anti-apoptotic factor AVEN was analyzed with regard to oncolytic VACV therapy. Besides a comparison of the replication efficacy of GLV-1h68 and VACV-mediated cell killing of four human tumor cell lines, it was shown that AVEN was expressed in all analyzed cells. Further, shown for HT-29 and 1936-MEL, the knockdown of AVEN by siRNA in cell culture resulted in an increase of apoptotic characteristics and a decrease of VACV infection. These findings provide essential insights for future virus development. N2 - Glioblastoma multiforme (GBM) ist einer der häufigsten und bösartigsten Hirntumoren im Erwachsenenalter. Die Prognose für GBM ist mit einer Überlebenszeit von 12-15 Monaten sehr schlecht. Eine alternative Behandlungsmöglichkeit stellt die onkolytische Virustherapie dar. Ein vielversprechender Kandidat ist das Vaccinia-Virus. Die große Diskrepanz zwischen der onkolytischen Effektivität in Zellkultur und den Ergebnissen im Mausmodell ist oftmals auf physiologische Komponenten im Tumor-Mikromilieu zurückzuführen. Die Zusammensetzung von Immunzellen im Mikromilieu variiert zwischen verschiedenen Krebsarten und Patienten und wird als Biomarker angewendet. Um eine erfolgreiche Virustherapie für GBM zu etablieren, wird ein umfangreiches Verständnis der Tumorbiologie, des Tumormikromilieus und des Immunsystems vorausgesetzt. Es wurde gezeigt, dass LIVP 1.1.1, ein attenuiertes wildtypisches VACV-Isolat, in der murinen GL261 Gliom-Zelllinie repliziert und zum Absterben der Zellen führt. Daraufhin wurde die Replikationseffizienz von LIVP 1.1.1 durch einen vergleichenden Ansatz in murinen GL261-Gliomen im Mausmodell untersucht. Es wurden immunkompetente C57BL/6-wildtypische (wt) Mäuse und immundefiziente Mausstämme mit unterschiedlichem genetischem Hintergrund, C57BL/6 athymisch und Balb/c athymisch, verwendet. Zudem wurden unterschiedliche Tumor-Lokalisationen, subkutan und intrakranial analysiert. Ausschließlich im subkutanen Tumormodell der Balb/c athymischen Mäuse fand eine effektive Replikation der Viren statt. Eine detaillierte Charakterisierung des Mikromilieus zum Zeitpunkt der Infektion zeigte, dass die Implantation derselben Tumorzellen in unterschiedliche Mausstämme zur Entwicklung eines unterschiedlichen Tumormikromilieus und einer variierenden Zusammensetzung von Immunzellen führt. Die C57BL/6-wt-Mäuse wiesen eine starke proinflammatorische Signatur auf. Des Weiteren zeigte die Studie signifikante Unterschiede in der MHCII-Expression: Die prominenteste Expression wurde in C57BL/6-wt-Mäusen detektiert. Im weiteren Verlauf wurde analysiert, wodurch die phänotypischen Veränderungen in den GL261-Zellen, verbunden mit der Hochregulierung von MHCII ausgelöst wurden und welche Konsequenzen dies für die virale Infektion dieser Zellen hat. Durch einen direkten Vergleich von C57BL/6-wt-Mäusen und C57BL/6-IFN-γ-Knockout Mäusen konnte IFN-γ als verantwortlicher Faktor im Tumormikromilieu identifiziert werden, welcher für die Reduktion des Virustiters und für die Hochregulierung von MHCII in den C57BL/6-wt-Mäusen verantwortlich ist. Der durch endogenes IFN-γ ausgelöste anti-virale Effekt war reversibel. Des Weiteren wurden Gründe für die Hemmung der viralen Replikation in den orthotopen Gliom-Modellen aufgeklärt. Durch immunhistochemische Analysen von Mikroglia und Astrozyten konnte gezeigt werden, dass die intratumorale Menge und Verteilung der Gliazellen in diesen Tumoren unabhängig von der Virus-Applikation war. Gliomzellen, Mikroglia und Astrozyten, wurden daraufhin untersucht. Im Vergleich zur starken Replikation in GL261-Zellen, ließen BV-2-Mikroglia und IMA 2.1-Astrozyten, nur eine sehr schwache Replikation von LIVP 1.1.1 zu. Ko-Kultivierungsversuche wiesen darauf hin, dass Mikroglia um die Aufnahme der Viruspartikel mit den Tumorzellen konkurrieren. Es wurde gezeigt, dass das LIVP 1.1.1 unterschiedliche Eigenschaften des Zelltods in den Zellen auslösen kann. BV-2 wiesen verstärkte Charakteristika der Apoptose auf während in GL261-Zellen nekrotische Eigenschaften überwogen. In BV-2-Zellen mit M1-Phänotyp wurde eine weitere Reduktion der viralen Infektion festgestellt. Die Infektion von IMA-2.1-Zellen war unabhängig vom induzierten M1/M2 Phänotyp. Die Applikation von BV-2-Zellen mit M1-Phänotyp auf organotypische Schnittkulturen mit implantierten GL261-Tumoren resultierte in einer reduzierten Infektion der BV-2-Zellen und einer verstärkten Infektion der GL261-Zellen. Es wurde gezeigt, dass GL261-Tumore durch den immunologischen und genetischen Hintergrund der Umgebung geprägt wurden. Es wurde ein Modell entwickelt, welches das Prinzip der personalisierten Medizin widerspiegelt. In einem zusätzlichen Projekt wurde, basierend auf Genexpressionsdaten und bioinformatischer Auswertung, die biologische Funktion des anti-apoptotischen Faktors AVEN hinsichtlich der onkolytischen Virustherapie mit dem VACV GLV-1h68 analysiert. Für diese Studie wurden vier humane Zelllinien untersucht. Neben einem Vergleich der Replikationseffizienz des VACV GLV-1h68 und der VACV-vermittelten Zelllyse wurde gezeigt, dass AVEN, in allen untersuchten Zellen exprimiert wird. Am Beispiel von HT-29 und 1936-MEL wurde gezeigt, dass die Herunterregulierung von AVEN durch siRNA zu einer Erhöhung der apoptotischen Eigenschaften und Abnahme der VACV Infektion führt. Die Ergebnisse liefern wichtige Erkenntnisse für die Entwicklung zukünftiger genetisch veränderter VACV. KW - Krebs KW - Vaccinia-Virus KW - Glioblastom KW - Onkolytische Vaccinia Virustherapie KW - Mikroglia KW - Astrozyten KW - Oncolytic Vaccinia Virus Therapy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118556 ER - TY - JOUR A1 - Kirscher, Lorenz A1 - Deán-Ben, Xosé Luis A1 - Scadeng, Miriam A1 - Zaremba, Angelika A1 - Zhang, Qian A1 - Kober, Christina A1 - Fehm, Thomas Felix A1 - Razansky, Daniel A1 - Ntziachristos, Vasilis A1 - Stritzker, Jochen A1 - Szalay, Aladar A. T1 - Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent JF - Theranostics N2 - We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system. KW - reporter gene KW - oncolysis KW - molecular imaging KW - virotherapy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124987 VL - 5 IS - 10 ER - TY - JOUR A1 - Kober, Christina A1 - Rohn, Susanne A1 - Weibel, Stephanie A1 - Geissinger, Ulrike A1 - Chen, Nanhai G. A1 - Szalay, Aladar A. T1 - Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps JF - Journal of Translational Medicine N2 - Background Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. Methods VACV LIVP 1.1.1 replication in C57BL/6 and \(Foxn1^{nu/nu}\) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. Results We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of \(Iba1^+\) microglia and \(GFAP^+\) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. Conclusion Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development. KW - GBM KW - tumor microenvironment KW - microglia KW - polarization KW - VACV KW - OSC KW - IMA2.1 KW - BV-2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126517 VL - 13 IS - 216 ER - TY - JOUR A1 - Szalay, Aladar A A1 - Weibel, Stephanie A1 - Hofmann, Elisabeth A1 - Basse-Luesebrink, Thomas Christian A1 - Donat, Ulrike A1 - Seubert, Carolin A1 - Adelfinger, Marion A1 - Gnamlin, Prisca A1 - Kober, Christina A1 - Frentzen, Alexa A1 - Gentschev, Ivaylo A1 - Jakob, Peter Michael T1 - Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer JF - Journal of Translational Medicine N2 - Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. KW - Oncolytic virotherapy KW - Malignant effusion KW - Lung cancer KW - VEGF KW - Lungenkrebs KW - Vascular endothelial Growth Factor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96016 UR - http://www.translational-medicine.com/content/11/1/106 ER -