TY - JOUR A1 - Czakai, Kristin A1 - Leonhardt, Ines A1 - Dix, Andreas A1 - Bonin, Michael A1 - Linde, Joerg A1 - Einsele, Hermann A1 - Kurzai, Oliver A1 - Loeffler, Jürgen T1 - Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans JF - Scientific Reports N2 - Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation. KW - gene regulation in immune cells KW - fungal host response KW - Aspergillus fumigatus KW - Candida albicans Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181185 VL - 6 ER - TY - JOUR A1 - Lupiañez, Carmen B. A1 - Villaescusa, Maria T. A1 - Carvalho, Agostinho A1 - Springer, Jan A1 - Lackner, Michaela A1 - Sánchez-Maldonado, José M. A1 - Canet, Luz M. A1 - Cunha, Cristina A1 - Segura-Catena, Joana A1 - Alcazar-Fuoli, Laura A1 - Solano, Carlos A1 - Fianchi, Luana A1 - Pagano, Livio A1 - Potenza, Leonardo A1 - Aguado, José M. A1 - Luppi, Mario A1 - Cuenca-Estrella, Manuel A1 - Lass-Flörl, Cornelia A1 - Einsele, Hermann A1 - Vázquez, Lourdes A1 - Ríos-Tamayo, Rafael A1 - Loeffler, Jürgen A1 - Jurado, Manuel A1 - Sainz, Juan T1 - Common Genetic Polymorphisms within NF kappa B-Related Genes and the Risk of Developing Invasive Aspergillosis JF - Frontiers in Microbiology N2 - Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4rs12203592T/T genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (ORREC = 6.24, 95%CI 1.25–31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4AATC and IRF4GGTC haplotypes (not including the IRF4rs12203592T risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4rs12203592 SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA. KW - Invasive Aspergillosis KW - genetic polymorphisms KW - susceptibility KW - NFkB-relatedgenes KW - interaction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165209 VL - 7 IS - 1243 ER - TY - JOUR A1 - Irmer, Henriette A1 - Tarazona, Sonia A1 - Sasse, Christoph A1 - Olbermann, Patrick A1 - Loeffler, Jürgen A1 - Krappmann, Sven A1 - Conesa, Ana A1 - Braus, Gerhard H. T1 - RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior JF - BMC Genomics N2 - Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. KW - Saccharomyces cerevisiae KW - cerebral aspergillosis KW - gene expression KW - Aspergillus fumigatus KW - iron homeostasis KW - invasive pulmonary aspergillosis KW - Candida albicans KW - cell wall KW - lysine biosynthesis KW - human pathogen KW - murine model KW - virulence KW - mRNA-Seq KW - transcriptome KW - human pathogenic fungi KW - secondary metabolite gene cluster KW - detoxification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151390 VL - 16 IS - 640 ER - TY - JOUR A1 - Loeffler, Claudia A1 - Loeffler, Jürgen A1 - Kobsar, Anna A1 - Speer, Christian P. A1 - Eigenthaler, Martin T1 - Septic Vs Colonizing Group B Streptococci Differentially Regulate Inflammation and Apoptosis in Human Coronary Artery Endothelial Cells - a Pilot Study JF - Journal of Pediatrics and Neonatal Care N2 - In this pilot study, we exemplify differences between a septic and a colonizing GBS strain during their interaction with Endothelial Cells by evaluating cytokine levels, surface and apoptosis-related molecules. These preliminary results indicate that in vitro infection using an exemplary septic GBS strain results in diminished activation of the innate immune response. KW - streptococci KW - apoptosis KW - inflammation KW - endothelial cells KW - innate immunity KW - early onset sepsis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125596 VL - 2 IS - 2 ER -