TY - RPRT A1 - Sendtner, Michael A1 - Kreutzberg, Georg W. A1 - Jennekens, Frans G. T1 - Workshop on trophic factors in the peripheral nervous system. Capri, October 1991. N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31451 ER - TY - JOUR A1 - Briese, Michael A1 - Saal, Lena A1 - Appenzeller, Silke A1 - Moradi, Mehri A1 - Baluapuri, Apoorva A1 - Sendtner, Michael T1 - Whole transcriptome profiling reveals the RNA content of motor axons JF - Nucleic Acids Research N2 - Most RNAs within polarized cells such as neurons are sorted subcellularly in a coordinated manner. Despite advances in the development of methods for profiling polyadenylated RNAs from small amounts of input RNA, techniques for profiling coding and non-coding RNAs simultaneously are not well established. Here, we optimized a transcriptome profiling method based on double-random priming and applied it to serially diluted total RNA down to 10 pg. Read counts of expressed genes were robustly correlated between replicates, indicating that the method is both reproducible and scalable. Our transcriptome profiling method detected both coding and long non-coding RNAs sized >300 bases. Compared to total RNAseq using a conventional approach our protocol detected 70% more genes due to reduced capture of ribosomal RNAs. We used our method to analyze the RNA composition of compartmentalized motoneurons. The somatodendritic compartment was enriched for transcripts with post-synaptic functions as well as for certain nuclear non-coding RNAs such as 7SK. In axons, transcripts related to translation were enriched including the cytoplasmic non-coding RNA 7SL. Our profiling method can be applied to a wide range of investigations including perturbations of subcellular transcriptomes in neurodegenerative diseases and investigations of microdissected tissue samples such as anatomically defined fiber tracts. KW - RNA KW - motor axons Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126800 ER - TY - JOUR A1 - Lillien, Laura E. A1 - Sendtner, Michael A1 - Rohrer, Hermann A1 - Hughes, Simon M. A1 - Raff, Martin C. T1 - Type-2 Astrocyte Development in Rat Brain Cultures is initiated by a CNTF-like protein produced by type-1 astrocytes N2 - No abstract available Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31708 ER - TY - JOUR A1 - Thoenen, Hans A1 - Hughes, Richard A. A1 - Sendtner, Michael T1 - Trophic support of motoneurons: physiological, pathophysiological, and therapeutic implications. N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31746 ER - TY - CHAP A1 - Thoenen, Hans A1 - Hughes, Richard A. A1 - Sendtner, Michael T1 - Towards a comprehensive understanding of the trophic support of motoneurons N2 - Motoneurons played an essential role in establishing the concept of target-mediated support of innervating neurons. However, it took several decades until molecules were identined which trophically support motoneurons in vitro and in vivo. The most potent molecule identined so far is ciliary neurotrophic factor (CNTF). It is expressed as a cytosolic molecule in myelinating Schwann cells rather than in skeletal muscle in the postnatal period and therefore does not qualify as a target-derived neurotrophic factor regulating motoneuron survival during embryonic development. However, the inactivation of CNTF by gene targeting experiments results in progressive atrophy and degeneration of motoneurons, demonstrating that CNTF plays an essential role as a maintenance factor for motoneurons postnatally. Secretory molecules which are expressed in skeletal muscle during embryonic development and which support motoneurons in culture and partially also in vivo include members of the NGF gene family (BDNF, NT-3, NT-4/S) , FGF-S, IGF-I, and UF. The evaluation of the physiological importance of these molecules is under investigation. KW - neurotrophic molecules KW - CNTF KW - gene targeting KW - NGF gene family KW - FGF-5 KW - lIF KW - IGF-I Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31117 ER - TY - JOUR A1 - Kaupmann, Klemens A1 - Sendtner, Michael A1 - Stöckli, Kurt A. A1 - Jockusch, Harald T1 - The gene of ciliary neurotrophic factor (cntf) maps to murine chromosome 19 and its expression is not affected in the hereditary motoneuron disease 'wobbler' of the mouse N2 - The cDNA for ciliary neurotrophic factor (CNTF), a polypeptide involved in the survival of motoneurons in mammals, has recently been cloned (Stöckli et al., Nature, 342, 920 - 923, 1989; Lin et al. Science, 246, 1023 - 1025, 1989). We have now localized the corresponding gene Cntf to chromosome 19 in the mouse, using an interspecific cross between Mus spretus and Mus musculus domesticus. The latter was carrying the gene wobbler (wr) for spinal muscular atrophy. DNA was prepared from backcross individuals and typed for the segregation of species-specific Cntf restriction fragments in relation to DNA markers of known chromosomal location. The M.spretus allele of Cntf cosegregated with chromosome 19 markers and mapped closely to Ly-1, to a region of mouse chromosome 19 with conserved synteny to human chromosome 11q. Cntf is not linked to wr, and the expression of CNTF mRNA and protein appears close to normal in facial and sciatic nerves, of affected (wr/wr) mice, suggesting that motoneuron degeneration of wobbler mice has its origin in defects other than reduced CNTF expression. KW - Mus spretus KW - interspeific backcross KW - spinal muscular atrophy KW - linkage KW - restriction fragment length polymorphism Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42626 ER - TY - JOUR A1 - Sendtner, Michael A1 - Stöckli, K. A. A1 - Thoenen, Hans T1 - Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration N2 - Ciliary neurotrophic factor (CNTF) is expressed in high quantities in Schwann cells of peripheral nerves during postnatal development of the rat. The absence of a hydrophobic leader sequence and the immunohistochemical localization of CNTF within the cytoplasm of these cells indicate that the factor might not be available to responsive neurons under physiological conditions. However, CNTF supports the survival of a variety of embryonic neurons, including spinal motoneurons in culture. Moreover we have recently demonstrated that the exogenous application of CNTF protein to the lesioned facial nerve of the newborn rat rescued these motoneurons from cell death. These results indicate that CNTF might indeed play a major role in assisting the survival of lesioned neurons in the adult peripheral nervous system. Here we demonstrate that the CNTF mRNA and protein levels and the manner in which they are regulated are compatible with such a function in lesioned peripheral neurons. In particular, immunohistochemical analysis showed significant quantities of CNTF at extracellular sites after sciatic nerve lesion. Western blots and determination of CNTF biological activity of the same nerve segments indicate that extracellular CNTF seems to be biologically active. After nerve lesion CNTF mRNA levels were reduced to <5 % in distal regions of the sciatic nerve whereas CNTF bioactivity decreased to only one third of the original before-lesion levels. A gradual reincrease in Schwann cells occurred concomitant with regeneration. Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31738 ER - TY - JOUR A1 - Arakawa, Yoshihiro A1 - Sendtner, Michael A1 - Thoenen, Hans T1 - Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines N2 - No abstract available Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31718 ER - TY - JOUR A1 - Franco-Espin, Julio A1 - Gatius, Alaó A1 - Armengol, José Ángel A1 - Arumugam, Saravanan A1 - Moradi, Mehri A1 - Sendtner, Michael A1 - Calderó, Jordi A1 - Tabares, Lucia T1 - SMN is physiologically downregulated at wild-type motor nerve terminals but aggregates together with neurofilaments in SMA mouse models JF - Biomolecules N2 - Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of β-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal. KW - spinal muscular atrophy KW - motor neuron degeneration KW - SMN granules KW - neuromuscular junction KW - β-actin mRNA KW - MAP1B KW - neurofilaments Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290263 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Maass, Anne A1 - Düzel, Sandra A1 - Brigadski, Tanja A1 - Goerke, Monique A1 - Becke, Andreas A1 - Sobieray, Uwe A1 - Neumann, Katja A1 - Lövdén, Martin A1 - Lindenberger, Ulman A1 - Bäckman, Lars A1 - Braun-Dullaeus, Rüdiger A1 - Ahrens, Dörte A1 - Heinze, Hans-Jochen A1 - Müller, Notger G. A1 - Lessmann, Volkmar A1 - Sendtner, Michael A1 - Düzel, Emrah T1 - Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults JF - NeuroImage N2 - Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n = 21) or to a control group (indoor progressive-muscle relaxation/stretching, n = 19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. KW - Exercise KW - Neurotrophic factors KW - Hippocampus KW - Vascular plasticity KW - Aging Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189219 VL - 131 ER -