TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred A1 - Naville, Magali T1 - Sex and the TEs: transposable elements in sexual development and function in animals JF - Mobile DNA N2 - Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host. KW - Transposable element KW - Sex determination KW - Sexual development and function KW - Germline KW - piRNA KW - Sex chromosome Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202510 VL - 10 ER - TY - JOUR A1 - Shen, Yingjia A1 - Chalopin, Domitille A1 - Garcia, Tzintzuni A1 - Boswell, Mikki A1 - Boswell, William A1 - Shiryev, Sergey A. A1 - Agarwala, Richa A1 - Volff, Jean-Nicolas A1 - Postlethwait, John H. A1 - Schartl, Manfred A1 - Minx, Patrick A1 - Warren, Wesley C. A1 - Walter, Ronald B. T1 - X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species JF - BMC Genomics N2 - Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 % and 102 % of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development. KW - Xiphophorus KW - X. hellerii KW - Annotation KW - Single nucleotide change KW - Genome comparison KW - X. couchianus KW - Genome assembly KW - NGS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164582 VL - 17 ER - TY - JOUR A1 - Brunet, Frédéric G. A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates JF - Genome Biology Evolution N2 - The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. KW - receptor tyrosine kinase KW - vertebrates KW - deuterostomes KW - whole genome duplications Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146988 VL - 8 IS - 15 ER - TY - JOUR A1 - Schartl, Manfred A1 - Walter, Ronald B. A1 - Shen, Yingjia A1 - Garcia, Tzintzuni A1 - Catchen, Julian A1 - Amores, Angel A1 - Braasch, Ingo A1 - Chalopin, Domitille A1 - Volff, Jean-Nicolas A1 - Lesch, Klaus-Peter A1 - Bisazza, Angelo A1 - Minx, Pat A1 - Hillier, LaDeana A1 - Wilson, Richard K. A1 - Fürstenberg, Susan A1 - Boore, Jeffrey A1 - Searle, Steve A1 - Postlethwait, John H. A1 - Warren, Wesley C. T1 - The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits JF - Nature Genetics N2 - Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles. KW - genomics KW - genomic analysis KW - evolutionary biology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132152 VL - 45 IS - 5 ER - TY - JOUR A1 - Tomaszkiewicz, Marta A1 - Chalopin, Domitille A1 - Schartl, Manfred A1 - Galiana, Delphine A1 - Volff, Jean-Nicolas T1 - A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon JF - BMC Genetics N2 - Background: Teleost fish present a high diversity of sex determination systems, with possible frequent evolutionary turnover of sex chromosomes and sex-determining genes. In order to identify genes involved in male sex determination and differentiation in the platyfish Xiphophorus maculatus, bacterial artificial chromosome contigs from the sex-determining region differentiating the Y from the X chromosome have been assembled and analyzed. Results: A novel three-copy gene called teximY (for testis-expressed in Xiphophorus maculatus on the Y) was identified on the Y but not on the X chromosome. A highly related sequence called texim1, probably at the origin of the Y-linked genes, as well as three more divergent texim genes were detected in (pseudo) autosomal regions of the platyfish genome. Texim genes, for which no functional data are available so far in any organism, encode predicted esterases/lipases with a SGNH hydrolase domain. Texim proteins are related to proteins from very different origins, including proteins encoded by animal CR1 retrotransposons, animal platelet-activating factor acetylhydrolases (PAFah) and bacterial hydrolases. Texim gene distribution is patchy in animals. Texim sequences were detected in several fish species including killifish, medaka, pufferfish, sea bass, cod and gar, but not in zebrafish. Texim-like genes are also present in Oikopleura (urochordate), Amphioxus (cephalochordate) and sea urchin (echinoderm) but absent from mammals and other tetrapods. Interestingly, texim genes are associated with a Helitron transposon in different fish species but not in urochordates, cephalochordates and echinoderms, suggesting capture and mobilization of an ancestral texim gene in the bony fish lineage. RT-qPCR analyses showed that Y-linked teximY genes are preferentially expressed in testis, with expression at late stages of spermatogenesis (late spermatids and spermatozeugmata). Conclusions: These observations suggest either that TeximY proteins play a role in Helitron transposition in the male germ line in fish, or that texim genes are spermatogenesis genes mobilized and spread by transposable elements in fish genomes. KW - sex determination KW - testis KW - Y chromosome KW - rolling-circle transposons KW - factor acetylhydrolase activity KW - platelet activation factor KW - xiphophorus maculatus KW - oryzias-latipes KW - sequence alignment KW - DM-domain gene KW - sex-determining region KW - evolution KW - fish KW - SGNH hydrolase KW - helitron KW - transposition KW - platyfish KW - sex chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116746 VL - 15 IS - 44 ER -