TY - JOUR A1 - Remelgado, Ruben A1 - Safi, Kamran A1 - Wegmann, Martin T1 - From ecology to remote sensing: using animals to map land cover JF - Remote Sensing in Ecology and Conservation N2 - Land cover is a key variable in monitoring applications and new processing technologies made deriving this information easier. Yet, classification algorithms remain dependent on samples collected on the field and field campaigns are limited by financial, infrastructural and political boundaries. Here, animal tracking data could be an asset. Looking at the land cover dependencies of animal behaviour, we can obtain land cover samples over places that are difficult to access. Following this premise, we evaluated the potential of animal movement data to map land cover. Specifically, we used 13 White Storks (Cicona cicona) individuals of the same population to map agriculture within three test regions distributed along their migratory track. The White Stork has adapted to foraging over agricultural lands, making it an ideal source of samples to map this land use. We applied a presence-absence modelling approach over a Normalized Difference Vegetation Index (NDVI) time series and validated our classifications, with high-resolution land cover information. Our results suggest White Stork movement is useful to map agriculture, however, we identified some limitations. We achieved high accuracies (F1-scores > 0.8) for two test regions, but observed poor results over one region. This can be explained by differences in land management practices. The animals preferred agriculture in every test region, but our data showed a biased distribution of training samples between irrigated and non-irrigated land. When both options occurred, the animals disregarded non-irrigated land leading to its misclassification as non-agriculture. Additionally, we found difference between the GPS observation dates and the harvest times for non-irrigated crops. Given the White Stork takes advantage of managed land to search for prey, the inactivity of these fields was the likely culprit of their underrepresentation. Including more species attracted to agriculture - with other land-use dependencies and observation times - can contribute to better results in similar applications. KW - Animal Tracking KW - land cover KW - land use KW - movement ecology KW - R KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225200 VL - 6 IS - 1 ER - TY - JOUR A1 - Wohlfart, Christian A1 - Wegmann, Martin A1 - Leimgruber, Peter T1 - Mapping threatened dry deciduous dipterocarp forest in South-east Asia for conservation management JF - Tropical Conservation Science N2 - Habitat loss is the primary reason for species extinction, making habitat conservation a critical strategy for maintaining global biodiversity. Major habitat types, such as lowland tropical evergreen forests or mangrove forests, are already well represented in many conservation priorities, while others are underrepresented. This is particularly true for dry deciduous dipterocarp forests (DDF), a key forest type in Asia that extends from the tropical to the subtropical regions in South-east Asia (SE Asia), where high temperatures and pronounced seasonal precipitation patterns are predominant. DDF are a unique forest ecosystem type harboring a wide range of important and endemic species and need to be adequately represented in global biodiversity conservation strategies. One of the greatest challenges in DDF conservation is the lack of detailed and accurate maps of their distribution due to inaccurate open-canopy seasonal forest mapping methods. Conventional land cover maps therefore tend to perform inadequately with DDF. Our study accurately delineates DDF on a continental scale based on remote sensing approaches by integrating the strong, characteristic seasonality of DDF. We also determine the current conservation status of DDF throughout SE Asia. We chose SE Asia for our research because its remaining DDF are extensive in some areas but are currently degrading and under increasing pressure from significant socio-economic changes throughout the region. Phenological indices, derived from MODIS vegetation index time series, served as input variables for a Random Forest classifier and were used to predict the spatial distribution of DDF. The resulting continuous fields maps of DDF had accuracies ranging from R-2 = 0.56 to 0.78. We identified three hotspots in SE Asia with a total area of 156,000 km(2), and found Myanmar to have more remaining DDF than the countries in SE Asia. Our approach proved to be a reliable method for mapping DDF and other seasonally influenced ecosystems on continental and regional scales, and is very valuable for conservation management in this region. KW - remote sensing KW - vegetation phenology KW - modis NDVI KW - time series analysis KW - Costa Rica KW - time series KW - Burma KW - Myanmar KW - continous fields KW - research priorities KW - deer cervus-eldi KW - land-cover KW - tropical forest KW - biodiversity conservation KW - habitat preferences KW - tropical dry forest conservation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117782 SN - 1940-0829 VL - 7 IS - 4 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Dech, Stefan A1 - Vounastou, Penelope A1 - Poda, Jean-Noel A1 - N'Goran, Eliézer K. A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing JF - PLoS Neglected Tropical Diseases N2 - Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. KW - schistosomiasis KW - Burkina Faso KW - remote sensing KW - surface water KW - habitats KW - agricultural irrigation KW - rivers KW - snails Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125845 VL - 9 IS - 11 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Dech, Stefan A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook JF - Parasites & Vectors N2 - Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited. KW - ecology KW - scale KW - remote sensing KW - risk profiling KW - spatial modelling KW - schistosomiasis KW - geographical information system KW - intermediate host snail KW - epidemology Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148778 VL - 8 IS - 163 ER - TY - JOUR A1 - Lausch, Angela A1 - Borg, Erik A1 - Bumberger, Jan A1 - Dietrich, Peter A1 - Heurich, Marco A1 - Huth, Andreas A1 - Jung, András A1 - Klenke, Reinhard A1 - Knapp, Sonja A1 - Mollenhauer, Hannes A1 - Paasche, Hendrik A1 - Paulheim, Heiko A1 - Pause, Marion A1 - Schweitzer, Christian A1 - Schmulius, Christiane A1 - Settele, Josef A1 - Skidmore, Andrew K. A1 - Wegmann, Martin A1 - Zacharias, Steffen A1 - Kirsten, Toralf A1 - Schaepman, Michael E. T1 - Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches JF - Remote Sensing N2 - Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support. KW - forest health KW - in situ forest monitoring KW - remote sensing KW - data science KW - digitalization KW - big data KW - semantic web KW - linked open data KW - FAIR KW - multi-source forest health monitoring network Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197691 SN - 2072-4292 VL - 10 IS - 7 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Leutner, Benjamin A1 - Dech, Stefan A1 - Vounatsou, Penelope A1 - N'Goran, Eliézer K. A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling JF - Geospatial Health N2 - Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements. KW - Côte d’Ivoire KW - schistosomiasis KW - spatial risk profiling KW - remote sensing KW - ecological relevant model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126148 VL - 10 IS - 2 ER -