TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Donat, Ulrike A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Nolte, Ingo A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients. KW - angiogenesis KW - microenvironment KW - model KW - cancer KW - therapy KW - pet dogs KW - nude-mice KW - breast-tumors KW - microvascular density KW - endothelial growth-factor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130039 VL - 7 IS - 10 ER - TY - JOUR A1 - Weibel, Stephanie A1 - Raab, Viktoria A1 - Yu, Yong A. A1 - Worschech, Andrea A1 - Wang, Ena A1 - Marincola, Francesco M. A1 - Szalay, Aladar A. T1 - Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection N2 - Background: In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV). Methods: Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion) in nude mice. Results: Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII+-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis. Conclusions: Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome. KW - Virusinfektion KW - Krebs Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68691 ER - TY - JOUR A1 - Schäfer, Simon A1 - Weibel, Stephanie A1 - Donat, Ulrike A1 - Zhang, Quian A1 - Aguilar, Richard J. A1 - Chen, Nanhai G. A1 - Szalay, Aladar A. T1 - Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors JF - BMC Cancer N2 - Background Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome. KW - microenvironment KW - angiogenesis KW - therapy KW - cancer KW - breast-tumors KW - matrix metalloproteinases KW - adenovirus KW - carcinoma KW - prostate KW - mice Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140800 VL - 12 IS - 366 ER - TY - JOUR A1 - Schäfer, Simon A1 - Weibel, Stephanie A1 - Donat, Ulrike A1 - Zhang, Qian A1 - Aguilar, Richard J. A1 - Chen, Nanhai G. A1 - Szalay, Aladar A. T1 - Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors N2 - Background: Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods: For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results: GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions: Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome. KW - Biochemie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78220 ER - TY - JOUR A1 - Riemer, Manuel A1 - Kranke, Peter A1 - Helf, Antonia A1 - Mayer, Debora A1 - Popp, Maria A1 - Schlesinger, Tobias A1 - Meybohm, Patrick A1 - Weibel, Stephanie T1 - Trial registration and selective outcome reporting in 585 clinical trials investigating drugs for prevention of postoperative nausea and vomiting JF - BMC Anesthesiology N2 - Background: Selective outcome reporting in clinical trials introduces bias in the body of evidence distorting clinical decision making. Trial registration aims to prevent this bias and is suggested by the International Committee of Medical Journal Editors (ICMJE) since 2004. Methods: The 585 randomized controlled trials (RCTs) published between 1965 and 2017 that were included in a recently published Cochrane review on antiemetic drugs for prevention of postoperative nausea and vomiting were selected. In a retrospective study, we assessed trial registration and selective outcome reporting by comparing study publications with their registered protocols according to the ‘Cochrane Risk of bias’ assessment tool 1.0. Results: In the Cochrane review, the first study which referred to a registered trial protocol was published in 2004. Of all 585 trials included in the Cochrane review, 334 RCTs were published in 2004 or later, of which only 22% (75/334) were registered. Among the registered trials, 36% (27/75) were pro- and 64% (48/75) were retrospectively registered. 41% (11/27) of the prospectively registered trials were free of selective outcome reporting bias, 22% (6/27) were incompletely registered and assessed as unclear risk, and 37% (10/27) were assessed as high risk. Major outcome discrepancies between registered and published high risk trials were a change from the registered primary to a published secondary outcome (32%), a new primary outcome (26%), and different outcome assessment times (26%). Among trials with high risk of selective outcome reporting 80% favoured at least one statistically significant result. Registered trials were assessed more often as ‘overall low risk of bias’ compared to non-registered trials (64% vs 28%). Conclusions: In 2017, 13 years after the ICMJE declared prospective protocol registration a necessity for reliable clinical studies, the frequency and quality of trial registration in the field of PONV is very poor. Selective outcome reporting reduces trustworthiness in findings of clinical trials. Investigators and clinicians should be aware that only following a properly registered protocol and transparently reporting of predefined outcomes, regardless of the direction and significance of the result, will ultimately strengthen the body of evidence in the field of PONV research in the future. KW - clinical trial KW - postoperative nausea and vomiting KW - selective outcome reporting KW - systematic review KW - trial registration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265518 VL - 21 ER - TY - JOUR A1 - Szalay, Aladar A A1 - Weibel, Stephanie A1 - Hofmann, Elisabeth A1 - Basse-Luesebrink, Thomas Christian A1 - Donat, Ulrike A1 - Seubert, Carolin A1 - Adelfinger, Marion A1 - Gnamlin, Prisca A1 - Kober, Christina A1 - Frentzen, Alexa A1 - Gentschev, Ivaylo A1 - Jakob, Peter Michael T1 - Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer JF - Journal of Translational Medicine N2 - Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. KW - Oncolytic virotherapy KW - Malignant effusion KW - Lung cancer KW - VEGF KW - Lungenkrebs KW - Vascular endothelial Growth Factor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96016 UR - http://www.translational-medicine.com/content/11/1/106 ER - TY - JOUR A1 - Reis, Stefanie A1 - Popp, Maria A1 - Schmid, Benedikt A1 - Stegemann, Miriam A1 - Metzendorf, Maria-Inti A1 - Kranke, Peter A1 - Meybohm, Patrick A1 - Weibel, Stephanie T1 - Safety and efficacy of intermediate- and therapeutic-dose anticoagulation for hospitalised patients with COVID-19: a systematic review and meta-analysis JF - Journal of Clinical Medicine N2 - Background: COVID-19 patients are at high thrombotic risk. The safety and efficacy of different anticoagulation regimens in COVID-19 patients remain unclear. Methods: We searched for randomised controlled trials (RCTs) comparing intermediate- or therapeutic-dose anticoagulation to standard thromboprophylaxis in hospitalised patients with COVID-19 irrespective of disease severity. To assess efficacy and safety, we meta-analysed data for all-cause mortality, clinical status, thrombotic event or death, and major bleedings. Results: Eight RCTs, including 5580 patients, were identified, with two comparing intermediate- and six therapeutic-dose anticoagulation to standard thromboprophylaxis. Intermediate-dose anticoagulation may have little or no effect on any thrombotic event or death (RR 1.03, 95% CI 0.86–1.24), but may increase major bleedings (RR 1.48, 95% CI 0.53–4.15) in moderate to severe COVID-19 patients. Therapeutic-dose anticoagulation may decrease any thrombotic event or death in patients with moderate COVID-19 (RR 0.64, 95% CI 0.38–1.07), but may have little or no effect in patients with severe disease (RR 0.98, 95% CI 0.86–1.12). The risk of major bleedings may increase independent of disease severity (RR 1.78, 95% CI 1.15–2.74). Conclusions: Certainty of evidence is still low. Moderately affected COVID-19 patients may benefit from therapeutic-dose anticoagulation, but the risk for bleeding is increased. KW - anticoagulant therapy KW - coronavirus disease 2019 KW - thrombosis KW - bleeding KW - death Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252285 SN - 2077-0383 VL - 11 IS - 1 ER - TY - JOUR A1 - Stangl, Stephanie A1 - Popp, Maria A1 - Reis, Stefanie A1 - Sitter, Magdalena A1 - Saal-Bauernschubert, Lena A1 - Schießer, Selina A1 - Kranke, Peter A1 - Choorapoikayil, Suma A1 - Weibel, Stephanie A1 - Meybohm, Patrick T1 - Reported outcomes in patients with iron deficiency or iron deficiency anemia undergoing major surgery: a systematic review of outcomes JF - Systematic Reviews N2 - Background Iron deficiency (ID) is the leading cause of anemia worldwide. The prevalence of preoperative ID ranges from 23 to 33%. Preoperative anemia is associated with worse outcomes, making it important to diagnose and treat ID before elective surgery. Several studies indicated the effectiveness of intravenous iron supplementation in iron deficiency with or without anemia (ID(A)). However, it remains challenging to establish reliable evidence due to heterogeneity in utilized study outcomes. The development of a core outcome set (COS) can help to reduce this heterogeneity by proposing a minimal set of meaningful and standardized outcomes. The aim of our systematic review was to identify and assess outcomes reported in randomized controlled trials (RCTs) and observational studies investigating iron supplementation in iron-deficient patients with or without anemia. Methods We searched MEDLINE, CENTRAL, and ClinicalTrials.gov systematically from 2000 to April 1, 2022. RCTs and observational studies investigating iron supplementation in patients with a preoperative diagnosis of ID(A), were included. Study characteristics and reported outcomes were extracted. Outcomes were categorized according to an established outcome taxonomy. Quality of outcome reporting was assessed with a pre-specified tool. Reported clinically relevant differences for sample size calculation were extracted. Results Out of 2898 records, 346 underwent full-text screening and 13 studies (five RCTs, eight observational studies) with sufficient diagnostic inclusion criteria for iron deficiency with or without anemia (ID(A)) were eligible. It is noteworthy to mention that 49 studies were excluded due to no confirmed diagnosis of ID(A). Overall, 111 outcomes were structured into five core areas including nine domains. Most studies (92%) reported outcomes within the ‘blood and lymphatic system’ domain, followed by “adverse event” (77%) and “need for further resources” (77%). All of the latter reported on the need for blood transfusion. Reported outcomes were heterogeneous in measures and timing. Merely, two (33%) of six prospective studies were registered prospectively of which one (17%) showed no signs of selective outcome reporting. Conclusion This systematic review comprehensively depicts the heterogeneity of reported outcomes in studies investigating iron supplementation in ID(A) patients regarding exact definitions and timing. Our analysis provides a systematic base for consenting to a minimal COS. Systematic review registration PROSPERO CRD42020214247 KW - iron deficiency KW - iron deficiency anemia KW - core outcome set KW - outcome reporting KW - data harmonization KW - preoperative setting KW - perioperative setting KW - surgery Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357213 VL - 13 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Josupeit, Rafael A1 - Rudolph, Stephan A1 - Ehrig, Klaas A1 - Donat, Ulrike A1 - Weibel, Stephanie A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Heisig, Martin A1 - Thamm, Douglas A1 - Stritzker, Jochen A1 - MacNeill, Amy A1 - Szalay, Aladar A. T1 - Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS. KW - breast-tumors KW - animal-model KW - nude-mice KW - cell-line KW - in-vitro KW - glv-1h68 KW - cancer KW - virotherapy KW - dogs KW - neutrophils Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129998 VL - 7 IS - 5 ER - TY - JOUR A1 - Kober, Christina A1 - Rohn, Susanne A1 - Weibel, Stephanie A1 - Geissinger, Ulrike A1 - Chen, Nanhai G. A1 - Szalay, Aladar A. T1 - Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps JF - Journal of Translational Medicine N2 - Background Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. Methods VACV LIVP 1.1.1 replication in C57BL/6 and \(Foxn1^{nu/nu}\) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. Results We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of \(Iba1^+\) microglia and \(GFAP^+\) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. Conclusion Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development. KW - GBM KW - tumor microenvironment KW - microglia KW - polarization KW - VACV KW - OSC KW - IMA2.1 KW - BV-2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126517 VL - 13 IS - 216 ER -