TY - THES A1 - Klenk, Johann Christoph T1 - Effekte von Parathormon auf die Struktur und Komplexierung des Parathormonrezeptors 1 T1 - Effects of parathyroid hormone on the structure and complexation of parathyroid hormone receptor 1 N2 - Der Parathormonrezeptor Typ 1 (PTHR) ist ein G-Protein-gekoppelter Rezeptor der Gruppe 2 und wichtigster Regulator des Kalziumstoffwechsels. Im ersten Teil der Arbeit wurde eine neuartige posttranslationale Modifikation des PTHR in Form einer proteolytischen Spaltung der Ektodomäne identifiziert, charakterisiert und deren Regulation beschrieben. Nach langanhaltender Stimulation des Rezeptors mit Agonisten – aber nicht mit Antagonisten – wurde eine Massen- und Mengenzunahme des Rezeptorproteins beobachtet. Es konnte gezeigt werden, dass der Rezeptor unter basalen Bedingungen einer Spaltung unterliegt. Der Massenunterschied entsteht durch die proteolytische Spaltung der Ektodomäne des PTHR, was nachfolgend die Stabilität des Rezeptors beeinträchtigt. Die Spaltung erfolgte innerhalb einer unstrukturierten Schleife der Ektodomäne, welche die Bereiche für die Ligandenbindung miteinander verbindet. Hierbei handelt es sich um eine Region, die im Vergleich zu anderen Gruppe 2-Rezeptoren spezifisch für den PTHR ist. Das durch die Spaltung entstandene N-terminale Fragment bleibt durch eine Disulfidbrücke mit dem Transmembranteil des Rezeptors verbunden. Durch Versuche mit verschiedenen Proteaseinhibitoren konnte die verantwortliche Protease der Familie der zinkabhängigen extrazellulären Proteasen zugeordnet werden. Diese Ergebnisse beschreiben einen Mechanismus wie die Homoöstase des PTHR reguliert sein könnte. In einem zweiten Abschnitt wurde die Interaktion der Adapterproteine NHERF1 und beta-Arrestin2 mit dem PTHR untersucht. Beide Proteine interagierten unabhängig mit dem Rezeptor, wobei NHERF1 über eine PDZ-Domäne konstitutiv an den C-Terminus des Rezeptors bindet. beta-Arrestin2 hingegen bindet nach Aktivierung des Rezeptors und führt zur Desensitisierung des Rezeptors. Mittels biochemischer und mikroskopischer Methoden konnte gezeigt werden, dass beide Proteine gemeinsam einen ternären Komplex mit dem PTHR bilden, welcher durch die direkte Interaktion zwischen NHERF1 und beta-Arrestin2 vermittelt wird. Dies hat zur Folge, dass beta-Arrestin im basalen Zustand durch NHERF1 an den Rezeptor gekoppelt wird. Durch Analyse der Assoziationskinetik mittels Fluoreszenz-Resonanz-Energietransfer-Messungen zeigte sich, dass diese Kopplung zu einer zweifach erhöhten Rekrutierungsgeschwindigkeit von beta-Arrestin2 an den PTHR führt. Somit stellt unterstützt NHERF1 die beta-Arrestin2-vermittelte Desensitisierung des PTHR. N2 - The Parathyroid hormone receptor type 1 (PTHR) belongs to the class 2 of G-protein coupled receptors (GPCRs) and is the main regulator of calcium homeostasis of the body. The first part of the dissertation describes a novel mechanism of receptor regulation based on a proteolytic cleavage of the receptor’s extracellular domain. Prolonged stimulation with PTH led to an apparent increase in molecular mass and in stability of the PTHR. Biochemical analysis of the receptor protein revealed that the PTHR undergoes posttranslational cleavage. Agonistic but not antagonistic PTH-peptides prevented this cleavage, thereby stabilizing the molecular mass and also increasing the half life of the receptor. The cleavage was shown to occur within an unstructured stretch of the extracellular domain of the receptor, which connects two parts required for ligand binding and which is unique in the PTHR amongst all class 2 GPCRs. The cleaved N-terminal fragment was further connected by a disulfide bridge and could only be released by reducing agents. By testing a panel of different protease inhibitors, a protease belonging to the family of zinc-dependent metalloproteases could be identified to be responsible for the PTHR cleavage. Thus, these findings describe a new mechanism how PTHR homeostasis may be regulated. In the second part, the interaction between the adaptor proteins NHERF1 and beta-arrestin2 with the PTHR was assessed. Both proteins interacted independently with the receptor. While NHERF1 formed a constitutive interaction with the PTHR C-terminus, beta-arrestin2-binding required activation of the receptor. Using biochemical and microscopic methods it was shown that both proteins formed a ternary complex with the receptor. This complex was mediated by a direct interaction between NHERF1 and beta-arrestin2 which has been identified in this work. As a consequence, NHERF1 leads to a coupling of beta-arrestin2 close to the PTHR. Association kinetics of beta-arrestin2 with the PTHR measured by fluorescent resonance energy transfer were two-fold increased in the presence of NHERF, suggesting that the ternary complex facilitates the desensitization of the PTHR by beta-arrestin2. KW - Parathormon KW - Proteolyse KW - Endokrinologie KW - Calcium KW - Rezeptor KW - Retinales S-Antigen KW - GPCR KW - Matrix-Metalloprotease KW - NHERF KW - Signaltransduktion KW - G-Protein KW - GPCR KW - Matrix-Metalloproteinase KW - NHERF KW - signal transduction KW - G-protein Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47288 ER - TY - THES A1 - Nekhoroshkova, Elena T1 - A-RAF kinase functions in ARF6 regulated endocytic membrane traffic T1 - Die Rolle der A-RAF-Kinase in ARF6 reguliertem endocytotischem Membrantransport N2 - Extracellular signals are translated and amplified via cascades of serially switched protein kinases, MAP kinases (MAPKs). One of the MAP pathways, the classical RAS/RAF/MEK/ERK pathway, transduces signals from receptor tyrosine kinases and plays a central role in regulation of cell proliferation. RAF kinases (A-, B- and C-RAF) function atop of this cascade and convert signals emanating from conformational change of RAS GTPases into their kinase activity, which in turn phosphorylates their immediate substrate, MEK. Disregulated kinase activity of RAF can result in tumor formation, as documented for many types of cancer, predominantly melanomas and thyroid carcinomas (B-RAF). A-RAF is the least characterized RAF, possibly due to its low intrinsic kinase activity and comparatively mild phenotype of A-RAF knockout mice. Nevertheless, the unique phenotype of araf -/- mice, showed predominantly neurological abnormalities such as cerebellum disorders, suggesting that A-RAF participates in a specific process not complemented by activities of B- and CRAF. Here we describe the role of A-RAF in membrane trafficking and identify its function in a specific step of endocytosis. This work led to the discovery of a C-terminally truncated version of A-RAF, AR149 that strongly interfered with cell growth and polarization in yeast and with endocytosis and actin polymerization in mammalian cells. As this work was in progress two splicing isoforms of ARAF, termed DA-RAF1 and DA-RAF2 were described that act as natural inhibitors of RAS-ERK signaling during myogenic differentiation (Yokoyama et al., 2007). DA-RAF2 contains the first 153 aa of A-RAF and thus is nearly identical with AR149. AR149 localized specifically to the recycling endosomal compartments as confirmed by colocalization and coimmunoprecipitation with ARF6. Expression of AR149 interferes with recycling of endocytosed transferrin (Tfn) and with actin polymerization. The endocytic compartment, where internalized Tfn is trapped, was identified as ARF6- and RAB11- positive endocytic vesicles. We conclude that the inhibition of Tfn trafficking in the absence of A-RAF or under overexpression of AR149 occurs between tubular- and TGNassociated recycling endosomal compartments. siRNA-mediated depletion of endogenous A-RAF or inhibition of MEK by U0126 mimic the AR149 overexpression phenotype, supporting a role of ARAF regulated ERK signalling at endosomes that is controlled by AR149 and targets ARF6. Our data additionally suggest EFA6 as a partner of A-RAF during activation of ARF6. The novel findings on the A-RAF localization and the interaction with ARF6 have led to a new model of ARAF function were A-RAF via activation of ARF6 controls the recycling of endocytic vesicles.Endocytosis and rapid recycling of synaptic vesicles is critically important for the physiological function of neurons. The finding, that A-RAF regulates endocytic recycling open a new perspective for investigation of the role of A-RAF in the nervous system. N2 - Extrazelluläre Signale werden über eine Serie von nacheinander geschalteten Proteinkinasen, den MAP-Kinasen (MAPK) weitergeleitet und multipliziert. Einer der MAPK-Signalwege, der RAS/RAF/MEK/ERK-Signaltransduktionsweg, leitet Signale von Tyrosinkinaserezeptoren weiter und spielt eine zentralle Role in der Regulation der Zellproliferation. RAF Kinasen (A-, B-, und CRAF) stehen am Anfang der Kaskade. Sie wandeln die signalbedingte strukturellen Änderungen der RAS-GTPase in ihre Kinaseaktivität um und phosphorylieren ihr direktes Substrat, MEK. Eine Störung in der Regulation der Kinaseaktivität des RAF-Proteins kann zur Tumorbildung führen, wie es bei vielen Krebsarten, vor allem Melanom und Schilddrüsenkarzinom (B-RAF), dokumentiert ist. A-RAF ist die bislang am wenigsten charakterisierte RAF-Kinase, möglicherweise aufgrund sihrer nidrigen intrinsischen Kinaseaktivität. Weiterhin weist die A-RAF defficiente Maus einen relativ milden hauptsächlich neuronalen Phänotyp auf, der sich unter anderem auch in einer Fehlfunktion des Cerebellums manifestiert. Dieser einzigartige Phänotyp weist darauf hin, dass eine Reihe zellulärer Prozesse spezifisch durch A-RAF und nicht durch aktiveren B- und C-RAF vermittellt wird. Im Rahmen dieser Doktorarbeit wurde die Rolle des A-RAF-Proteins im intrazellulären Membrantransport analysiert und eine spezifische A-RAF Funktion by endozytotischen Prozessen identifiziert. Diese Arbeit führte zur Entdeckung einer C-terminal verkürtzten Form von A-RAF, AR149, welche das Wachstum und die Polarisation von Hefezellen beeinträchtigt. In Säugetierzellen wirkt AR149 störend auf die Endozytose und die Aktinpolymerisation. Während des Entstehungsprozesses dieser Studie, wurden parallel zwei Spleißisoformen des A-RAF-Proteins, DARAF1 und 2, publiziert, die als natürliche Inhibitoren des RAS-RAF-MEK-ERK-Signalwegs in der myogenen Differenzierung agieren (Yokoyama et al., 2007). DA-RAF2 beinhaltet die ersten 153 Aminosäuren des A-RAF Proteines und ist damit fast identisch mit AR149. Eigene Kolokalisierungund Koimmunopräzipitationsexperimente mit ARF6 weisen darauf hin, dass AR149 spezifisch in ARF6-positiven Recycling-Endosomen lokalisiert ist. Expression des AR149 Proteins bechindert das Recycling von endozytiertem Transferrin und die Aktin Polimerisation. Die endosomalen Kompartimente in denen internalisiertes Transferrin gefangen vor liegt, konntenals ARF6- und RAB11-positive endozytotische Vesikeln characterisiert werden. Diese Ergebnisse lassen auf eine durch A-RAF Überexpression bzw. durch die Abwesenheit an A-RAF vermittelte Blokade des intrazellulären Transferrintransportes zwischen den tubulären- und Trans-Golgi-Netzwerk-assoziirten endosomalen Recycling-Kompartimenten schließen. Inhibierung der endogenen A-RAF-Expression durch siRNA oder Hemmung der MEK-Aktivität durch U0126 haben den selben Effekt wie AR149. Auf der Basis dieser Ergebnisse wird ein neues Modell für die Rolle der A-RAF regulierten ERK Signallwirkung auf Endosomen vorgestellt, bei dem das Zielprotein die ARF6 GTPase durch 3 AR149/DA-RAF2 negativ reguliert wird. Daruber hinaus deuten unsere Daten darauf hin, dass EFA6, ein GEF-Faktor von ARF6, als Kooperationspartner von A-RAF bei der ARF6-Aktivierung fungiert. Endocytose und das schnelle Recycling von synaptischen Vesikeln ist von besonderer Bedeutung für die Funktion von Neuronen. Aus dem Befund, dass A-RAF ein Regulator des endocytotischen Recyclings ist ergibt sich dacher eine neue Perspektieve für die Untersuchung der A-RAF Funktion im Nervensystem. KW - Raf-Kinasen KW - Endocytose KW - Onkologie KW - Signaltransduktion KW - Carcinogenese KW - ARF6 GTPase KW - Recycling- Endosomen KW - ERK KW - A-RAF KW - Signal-Übertragung KW - A-RAF KW - signal transduction KW - mitogen cascade KW - membrane trafficking KW - endocytic recycling Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44566 ER -