TY - THES A1 - Bury, Susanne T1 - Molekularbiologische Untersuchungen der antagonistischen Effekte des probiotischen \(Escherichia\) \(coli\) Stamms Nissle 1917 auf Shiga-Toxin produzierende \(Escherichia\) \(coli\) Stämme T1 - Molecular biological investigations on the antagonistic effects of the probiotic \(Escherichia\) \(coli\) strain Nissle 1917 towards Shiga toxin producing \(Escherichia\) \(coli\) N2 - Shiga toxin produzierende E. coli (STEC) stellen mit einer Infektionsdosis von gerade einmal 100 Bakterien ein großes Risiko für unsere Gesundheit dar. Betroffene Patienten können milde Krankheitssymptome wie wässrigen Durchfall aufweisen, welcher sich allerdings zu blutigem Durchfall oder dem hämolytisch urämischen Syndrom (HUS) weiterentwickeln kann. Die Ursache für das Krankheitsbild ist das zytotoxische Protein Shiga-Toxin (Stx), welches von STEC Stämmen produziert wird, eukaryotischen Zellen angreift und den apoptotischen Zelltod induziert. Es konnte gezeigt werden, dass infizierte Patienten in ihrem Krankheitsverlauf stark variieren, was unter anderem auf die Zusammensetzung ihrer Mikrobiota zurückzuführen sein könnte. Diesbezüglich können zum Beispiel einige Bakterien bereits die Darmbesiedlung von STEC Stämmen unterbinden, wohingegen andere die Toxin Produktion der pathogenen Stämme beeinflussen und wieder andere von den stx tragenden Phagen infiziert werden können und daraufhin selbst zu Toxin produzierenden Stämmen werden. Da die genetischen Informationen für das Toxin auf einem Prophagen im Genom der STEC Stämme kodiert ist, führt eine Antibiotika Behandlung von infizierten Patienten zwar zum Tod der Bakterien, hat allerdings auch einen Wechsel vom lysogenen zum lytischen Phagen Zyklus und damit einen enormen Anstieg an freigesetztem Stx zur Folge. In den letzten Jahrzehnten kam es immer wieder zu Epidemien mit STEC Stämmen, welche auch einige Todesopfer forderten. Die Behandlung von Patienten erfolgt auf Grund von mangelnden Behandlungsmöglichkeiten meist nur symptomatisch, weswegen neue Strategien für die Behandlung einer STEC Infektion dringend benötigt werden. Der probiotische E. coli Stamm Nissle 1917 (EcN) zählt bereits seit mehr als 100 Jahren als Medikament für Behandlungen von Darmentzündungen. In vitro und in vivo Studien mit dem probiotischen Stamm und STEC Stämmen konnten zeigen, dass EcN die Produktion von Stx unterdrückt und gleichzeitig die STEC Zellzahl reduziert. Diese Ergebnisse waren der Anlass für diese Studie in der die Auswirkungen von EcN auf STEC Stämme genauer untersucht wurden, um eine mögliche Behandlung von STEC Infektionen mit dem Probiotikum zu gewährleisten. Eines der Hauptziele dieser Studie war es, herauszufinden, ob EcN von stx-Phagen infiziert werden kann und damit selbst zu einem Toxin Produzenten wird. In diesem Falle wäre eine Behandlung mit dem E. coli Stamm ausgeschlossen, da es den Krankheitsverlauf verschlimmern könnte. Verschiedene experimentelle Ansätze in denen versucht wurde den YaeT stx-Phagen Rezeptor tragenden Stamm zu infizieren schlugen fehl. Weder mittels PCR Analysen, Phagen Plaque Assays oder der Phagen Anreicherung konnte eine Lyse oder eine Prophagen Integration nachgewiesen werden. Transkriptom Analysen konnten zeigen, dass Gene eines lambdoiden Prophagen in EcN in Anwesenheit von stx-Phagen stark reguliert sind. Auch andere E. coli Stämme, welche sich ebenfalls durch eine Resistenz gegenüber einer stx-Phagen Infektion auswiesen, wurden positiv auf lambdoide Prophagen untersucht. Einzig dem stx-Phagen sensitiven K-12 Stamm MG1655 fehlt ein kompletter lambdoider Prophage, weswegen die Vermutung nahe liegt, dass ein intakter lambdoider Prophage vor der Superinfektion mit stx-Phagen schützten kann. In weiteren Experimenten wurde der Einfluss der Mikrozin-negativen EcN Mutante SK22D auf STEC Stämme untersucht. Es konnte gezeigt werden, dass SK22D nicht nur die Produktion des zytotoxischen Proteins unterdrückt, sondern auch mit der Produktion der stx-Phagen von allen getesteten STEC Stämmen interferiert (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- und zwei O104:H4 Isolate vom STEC Ausbruch in Deutschland im Jahr 2011). Transwell Studien konnten zeigen, dass der Faktor, welcher die Transkription des Prophagen unterdrückt, von SK22D sekretiert wird. Die Ergebnisse lassen vermuten, dass die Präsenz von SK22D den lysogenen Zustand des Prophagen stützt und somit den lytischen Zyklus unterdrückt. Da stx-Phagen eine große Gefahr darstellen andere E. coli Stämme zu infizieren, haben wir uns in weiteren Studien dem Einfluss von EcN auf isolierte Phagen gewidmet. Die Kultivierungsexperimente von EcN mit Phagen zeigten, dass der probiotische Stamm in der Lage war die stx-Phagen in ihrer Effizienz der Lyse des K 12 Stammes MG1655 von~ 1e7 pfus/ml auf 0 pfus/ml nach einer 44 stündigen Inkubation zu inaktivieren. Diese Inaktivierung konnte auf die Aktivität eines hitzestabilen Proteins, welches in der stationären Wachstumsphase synthetisiert wird, zurückgeführt werden. Studien welche einen Anstieg der Biofilmmasse zur Folge hatten zeigten eine gesteigerte Effizienz in der Phagen Inaktivierung, weswegen Komponenten des Biofilms möglicherweise die Phagen Inaktivierung herbeiführen. Neben dem direkten Einfluss auf die Phagen wurde auch ein Schutzeffekt von SK22D gegenüber dem stx-Phagen empfänglichen K 12 Stämmen untersucht. Lysogene K 12 Stämme zeichneten sich durch eine enorme Stx und stx-Phagen Produktion aus. Die Präsenz von SK22D konnte den K 12 vermittelten Anstieg der pathogenen Faktoren unterbinden. Transwell Ergebnisse und Kinetik Studien lassen vermuten, dass SK22D eher die Phagen Infektion von K-12 Stämmen unterbindet als die Lyse von lysogenen K-12 Stämmen zu stören. Eine mögliche Erklärung für den Schutz der K-12 Stämme vor einer stx-Phagen Infektion könnte darin liegen, dass die K-12 Stämme innerhalb der SK22D Kultur wachsen und dadurch von den infektiösen Phagen abgeschirmt werden. Zusammenfassend konnte in dieser Studie gezeigt werden, dass der probiotische Stamm EcN sowohl die Lyse von STEC Stämmen unterdrückt als auch die infektiösen stx-Phagen inaktiviert und sensitive E. coli Stämme vor der Phagen Infektion schützen kann. Diese Ergebnisse sollten als Grundlage für in vivo Studien herangezogen werden, um eine mögliche Behandlung von STEC infizierten Patienten mit dem Probiotikum zu gewährleisten. N2 - Shiga toxin producing E. coli strains (STEC) are a great concern to human health. Upon an infection with as few as 100 bacteria, humans can develop disease symptoms ranging from watery to bloody diarrhea or even develop the hemolytic uremic syndrome (HUS). The major factor contributing to the disease symptoms is Shiga toxin (Stx) which can bind to the eukaryotic cells in the intestine of the human and induce cell death via apoptosis. Based, among other things, on the microbiota composition, the impact of STEC can vary. Some bacteria of the microbiota can interfere with the colonization of STEC strains in the first place. Others cannot impair the colonization but interfere with the toxin production and there are still others which are even infected by stx encoding phages, being released from STEC strains. Those previously harmless bacteria subsequently contribute to the toxin increase and worsen the disease progression. Since the genetic information of Stx is encoded on a prophage, antibiotic treatment of patients can lead to an increased toxin and stx-phage release and is therefore not recommended. Several STEC epidemics in different countries, which even resulted in the death of some patients, demonstrated that there is an urgent need for alternative treatment strategies. The E. coli strain Nissle 1917 (EcN) has been used as a probiotic to treat gastrointestinal infections for more than 100 years. It harbors several fitness factors which contribute to the establishment of an intact intestinal barrier in the human gut. Moreover, studies with EcN unraveled that the probiotic E. coli can interfere with the colonization of STEC strains and their toxin production. This study aimed to investigate if EcN could be a possible alternative or supplementary treatment strategy for STEC infected patients, or a preventive treatment for the patient’s close contact persons. Therefore, EcN was firstly investigated for a possible stx-prophage integration into its’s genome which would eliminate it from being a potential treatment due to the possibility of disease worsening. Despite the presence of the stx-phage surface receptor YaeT, EcN demonstrated a complete resistance towards the lysis and the lysogeny by stx-phages, which was proven by PCR, phage-plaque assays and phage enrichment approaches. Transcriptome data could unravel that a lambdoid prophage in the genome of EcN is involved in the resistance towards the phage infection. Other commensal E. coli tested presented a stx-phage resistance as well and in silico analysis revealed that all of them harbor a complete lambdoid prophage besides the stx-phage susceptible K-12 strain MG1655. We assume that the resistance of EcN towards a stx-phage infection is connected to the presence of an intact lambdoid prophage which interferes with superinfection. Further experiments regarding the impact of the microcin negative EcN mutant SK22D towards STEC strains depicted that SK22D did not only interfere with the toxin production but also negatively regulated the transcription of the entire stx-prophage in coculture with all STEC strains tested (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- and two O104:H4 isolates from the 2011 outbreak in Germany). This influence on the pathogenic factor production was evinced to be cell contact independent as SK22D could even interfere with the pathogenic factor production when being separated from the STEC strain EDL933 by a Transwell membrane with the pore size of 0.4 µm. From this data we concluded, that factor(s) released by SK22D interfere with the lysis of STEC strains by stabilizing the lysogenic state. Another positive aspect of EcN towards the pathogenicity of STEC strains was encountered when EcN was incubated with isolated stx-phages. The probiotic strain could reduce the infectivity of the phages towards a MG1655 lysis from ~ 1e7 pfus/ml to 0 after 44 h of incubation. Various approaches to determine the characteristics of the factor(s) of EcN which are involved in the phage inactivation depicted it to be a heat resistant stationary phase protein on the surface of EcN, which could be a component of its biofilm. Regarding the protective role of EcN we could further evince that SK22D was capable of interfering with the lysogenic K 12 mediated increase of Stx and stx phages. Lysogenic K-12 strains were characterized by a huge increase of Stx and stx-phage production. The presence of SK22D anyhow, could interfere with this K-12 mediated pathogenic factor increase. Transwell and stx phage infection kinetics led to the proposal that SK22D interfered with the stx-phage infection of K-12 strains in the first place rather than disturbing the lysis of lysogenic K 12. The protection from the phage infection could be due to the growth of K 12 strains within the SK22D culture, whereby the phage susceptible strains are masked from phage detection. Summarizing, this work could underline the beneficial attributes of EcN towards the STEC pathogenicity in vitro. These results should be considered as pioneers for future in vivo studies to enable EcN medication as a supportive STEC infection treatment strategy. KW - EHEC KW - Probiotikum KW - Bakteriophagen KW - E. coli Nissle 1917 KW - EHEC KW - Probiotikum KW - stx-Phagen KW - Lambdoide Prophagen KW - probiotica KW - stx-phages KW - lambdoid prophage Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163401 ER - TY - THES A1 - Troge, Anja T1 - Studien am Flagellensystem des Escherichia coli Stammes Nissle 1917 (EcN) im Hinblick auf seine Funktion als Probiotikum T1 - Studies on the flagellar system of Escherichia coli Nissle 1917 (EcN) with regard to its function as a probiotic N2 - Escherichia coli Nissle 1917 (EcN) gehört zu den am besten untersuchten und charakterisierten probiotischen Bakterienstämmen. Seit Beginn des letzten Jahrhunderts wird er als Medikament eingesetzt, um verschiedene Darmerkrankungen wie z.B. Diarrhöe, entzündliche Darmerkrankungen und Verstopfung zu behandeln. Die Flagelle des EcN vermittelt Beweglichkeit und kann die Produktion von humanem β-Defensin 2 (hBD2) durch Epithelzellen induzieren. Somit ist dieses Organell direkt in die probiotische Funktion des EcN involviert. Es konnte gezeigt werden, dass die Flagellen anderer Bakterien, wie z.B. dem probiotischen Stamm Bacillus cereus CH oder den pathogenen Stämmen Pseudomonas aeruginosa und Clostridium difficile, die Adhäsion an intestinalen Mucus, welcher von Epithelzellen sekretiert wird, vermitteln. Allerdings blieb unklar, welcher Teil der Flagelle an welche Mucuskomponente bindet. Die Fähigkeit effizient an Wirtgewebe zu adhärieren wird als wichtiges Attribut eines probiotischen Stammes angesehen. Ex vivo Adhäsionsstudien mit Kryoschnitten humaner Darmbiopsien haben gezeigt, dass die Flagelle des EcN in die effiziente Adhäsion an humanes Darmgewebe involviert sein muss. Aus diesem Grund wurde in dieser Arbeit die Funktion der Flagelle des EcN als Adhäsin untersucht. Zunächst wurde die hyperflagellierte Variante EcN ATHF isoliert und durch verschiedene Experimente, z.B. Schwärmagartests und Elektronenmikroskopie, charakterisiert. Weitere ex vivo Adhäsionsstudien mit EcN ATHF zeigten eine höhere Adhäsionseffizienz dieser hyperflagellierten Variante und bestätigten damit die Rolle der Flagelle bei der effizienten Adhäsion von EcN an die Kryoschnitte der humanen Darmbiopsien. Interessanterweise fungierte die Flagelle in in vitro Studien mit den humanen Epithelzellen Caco-2 und T24 nicht als Adhäsin. Diese Unterschiede zwischen den in vitro und ex vivo Studien führten zu der Annahme, dass die Flagelle des EcN in vivo die Adhäsion an Mucus vermittelt, welcher von den Caco-2- und T24-Zellen nicht produziert wird, aber in den Kryoschnitten der Darmbiopsien nachgewiesen wurde. Diese Vermutung wurde durch in vitro Adhäsionsstudien mit der Mucin-produzierenden Epithelzelllinie LS174-T bestätigt, da die Flagellen für eine effektive Adhäsion an diese Zellen essentiell waren. Zudem reduzierte die Präinkubation flagellierter EcN-Stämme mit Mucin2 ihre Adhäsionseffizienz an Kryoschnitte humaner Darmbiopsien. Um die direkte Interaktion zwischen Flagellen des EcN Wildtyps und Mucus zu zeigen, wurde ein ELISA etabliert. Es konnte eine direkte konzentrationsabhängige Interaktion zwischen isolierten Flagellen des EcN Wildtyps und Mucin2, bzw. humanem Mucus (Kolon) beobachtet werden. Interessanterweise konnte keine Interaktion zwischen isolierten Flagellen des EcN Wildtyps und murinem Mucus (Duodenum, Ileum, Caecum, Colon) festgestellt werden. Dies weist darauf hin, dass die Mucuszusammensetzung zwischen verschiedenen Spezies variiert. Verschiedene Kohlenhydrate, welche bekannte Mucusbestandteile sind, wurden auf ihre Interaktion mit der Flagelle von EcN getestet und Gluconat wurde als ein Rezeptor identifiziert. Die Präinkubation isolierter Flagellen mit Gluconat reduzierte ihre Interaktion mit Mucin2, bzw. humanem Mucus signifikant. Zudem wurde die oberflächenexponierte Domäne D3 des Flagellins, der Hauptuntereinheit der Flagelle, als möglicher Interaktionspartner von Mucin2, bzw. humanem Mucus ausgeschlossen. Flagellen, die aus einer Domäne D3 Deletionsmutante isoliert wurden, zeigten sogar eine effizientere Bindung an Mucin2, bzw. humanen Mucus. Weiterhin konnte gezeigt werden, dass Änderungen des pH-Wertes signifikante Effekte auf die Interaktion zwischen Mucus und isolierten Flagellen hatten, vermutlich aufgrund von Konformationsänderungen. Zusammenfassend wurde in dieser Arbeit die Flagelle als neues und scheinbar wichtigstes Adhäsin in vivo für den probiotischen Stamm EcN identifiziert. Hierfür wurden sowohl eine hyperflagellierte Variante, eine ΔfliC Mutante, sowie der dazugehörige komplementierte Stamm verwendet. EcN ist zudem der erste probiotische Stamm für den eine direkte Bindung der Flagellen an humanen Mucus nachgewiesen werden konnte. Die Mucuskomponente Gluconat konnte dabei als wichtiger Rezeptor identifiziert werden. Da einige pathogene Bakterien ihre Flagelle zur Adhäsion an Wirtsgewebe nutzen, könnte dieses Organell EcN dazu befähigen, mit Pathogenen um die erfolgreiche Kolonisierung des Darms zu konkurrieren, was als wichtige Eigenschaft eines Probiotikums betrachtet wird. N2 - Escherichia coli Nissle 1917 (EcN) is one of the best studied and characterized probiotic bacterial strains. It is in use as a drug since the beginning of last century to treat various diseases and dysfunctions of the human intestinal tract, e.g. diarrhea, inflammatory bowel diseases and obstipation. The flagellum of EcN mediates motility and is able to induce human beta defensin 2 (hBD2) production by epithelial cells. Therefore, this organelle is directly involved in EcN’s probiotic function. It has been shown that the flagella of several other bacteria, including the probiotic strain Bacillus cereus CH or the pathogenic strains Pseudomonas aeruginosa and Clostridium difficile, mediate adhesion to intestinal mucus, which is secreted by epithelial cells. However it remained unclear which part of the flagella binds to which mucus component. The ability to adhere efficiently to host tissue is considered to be an important attribute for a probiotic strain. Ex vivo adhesion studies with cryosections of human gut biopsies have revealed, that the flagellum of EcN must be involved in efficient adhesion to human intestinal tissue. Thus, the function of EcN’s flagellum as an adhesin was investigated in this work. First, the hyperflagellated variant EcN ATHF was isolated and characterized by several experiments, e.g. motility tests and electron microscopy. Further ex vivo adhesion studies with EcN ATHF demonstrated a higher adhesion efficiency of this hyperflagellated variant confirming the role of the flagellum for adhesion of EcN to cryosections of human gut biopsies. Interestingly, EcN’s flagellum did not function as an adhesin in in vitro adhesion studies with the human epithelial cells Caco-2 and T24. These differences between the in vitro and ex vivo studies led to the assumption, that in vivo the flagellum of EcN mediates adhesion to mucus, which is not produced by Caco-2 and T24 cells, but was shown to be present in the cryosections of human gut biopsies. This was confirmed by in vitro adhesion studies with the mucin-producing epithelial cell line LS174-T, as flagella were essential for efficient adhesion to these cells. Furthermore, preincubation of flagellated EcN strains with mucin2 (porcine stomach) reduced their adhesion effiency to cryosections of human gut biopsies. To demonstrate the direct interaction between flagella from EcN wildtype and mucus, an ELISA was established. A direct concentration-dependent interaction between isolated flagella from EcN wildtype and mucin2 as well as human mucus (Colon) could be observed. In contrast, there was no direct interaction between isolated flagella from EcN wildtype and murine mucus (Duodenum, Ileum, Ceacum, Colon), indicating that mucus composition varies among different species. By testing different carbohydrates - known to be constituents of mucus - for their interaction with the flagellum of EcN, gluconate was identified as one receptor. Preincubation of isolated flagella with gluconate significantly reduced their interaction with mucin2 or human mucus. Additionally, the surface exposed domain D3 of flagellin, the major subunit of the flagellum, could be excluded to be responsible for the interaction with mucin2 or human mucus. Flagella, which were isolated from a domain D3 deficient mutant, bound even more efficient to mucin2 as well as to human mucus. Furthermore the change of pH had significant effects on the interaction between mucus and isolated flagella, probably due to conformational changes. In summary, this study identified the flagellum as a novel and apparently major adhesin in vivo of the probiotic EcN by employing a hyperflagellated variant, a ΔfliC mutant as well as the corresponding complemented strain. Additionally, EcN is so far the first probiotic strain, for which it has been shown, that its flagella directly bind to human mucus. Thereby the mucus component gluconate was identified as an important receptor. As some pathogens have been reported to use their flagella for adhesion to human host tissue, this organelle might enable EcN to compete with pathogens for successful colonization of the gut, which has been postulated to be a prerequisite for probiotics. KW - Escherichia coli KW - Probiotikum KW - Geißel KW - Adhäsion KW - Adhärenz KW - E.coli Nissle 1917 KW - Flagelle KW - adhesion KW - E. coli Nissle 1917 KW - flagellum Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74201 ER - TY - THES A1 - Seo, Ean Jeong T1 - Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins T1 - Konstruktion von rekombinanten E. coli Nissle 1917 (EcN) Stämmen, die Defensine exprimieren bzw. sekretieren N2 - Der probiotische Escherichia coli Stamm Nissle 1917 (EcN) ist eines der wenigen Probiotika, die als aktive Komponente eines Medikaments in mehreren Ländern zugelassen sind. Am besten ist die Wirksamkeit des EcN für die Remissionserhaltung von an Colitis Ulcerosa leidenden Patienten dokumentiert. Diese Fähigkeit ist vermutlich darauf zurückzuführen, dass EcN in der Lage ist die Produktion des humanen beta-Defensins 2 (HBD2) mittels seiner Flagelle zu Induzieren. In dieser Studie wurden rekombinante EcN Stämme konstruiert, die ein Defensin zu produzieren vermögen. Zu diesem Zweck wurden Kodon-optimierte Defensingene in Expressionsplasmidvektoren kloniert, die entweder die Proform mit der Signalsequenz oder die reife Defensinform des humanen -Defensins 5 (HD5) oder des humanen -Defensins 2 (HBD2) unter der Kontrolle des T7-Promotors kodieren. Die Synthese dieser Defensine wurde mittels Western-Blot nach der Induktion der Expression und der Lyse der rekombinanten EcN Stämme demonstriert. Das rekombinante reife HBD2 mit einem N-terminalen His-Tag konnte mittels Ni-Säulen-Chromatographie aufgereinigt werden. Das so gewonnene HBD2 zeigte antimikrobielle Aktivität gegen E. coli, Salmonella enterica Serovar Typhimurium und Listeria monocytogenes. In einem zweiten Ansatz wurde der Teil des HBD2-Gens mit dem yebF-Gen fusioniert, der das reife HBD2 kodiert. Das resultierende Fusionsprotein YebFMHBD2 wurde von dem entsprechenden EcN Stamm nach Induktion der Expression sekretiert. Die Präsenz von YebFMHBD2 im Medium war nicht das Ergebnis von Zellyse wie Western-Blots spezifisch für die -Galaktosidase und das Maltose-Bindeprotein mit dem Kulturüberstand zeigten. Dieser Kulturüberstand inhibierte das Wachstum von E. coli, Salmonella enterica Serovar Typhimurium und Listeria monocytogenes nach Dialyse und Aufkonzentration sowohl in Agardiffusionsassays als auch in Flüssigcokultur. Damit konnte gezeigt werden, dass EcN ein für die Produktion von bestimmten humanen Defensinen geeignetes Probiotikum darstellt. EcN ist bei der Behandlung von Morbus Crohn Patienten nicht aktiv. Dies ist vermutlich in der genetisch bedingten Unfähigkeit zur ausreichenden Defensinproduktion solcher Individuen begründet. Als ein erster Schritt in der Entwicklung von alternativen Ansätzen zur Behandlung Morbus Crohn Patienten wurden in dieser Arbeit EcN Stämme konstruiert, die in der Lage sind HD5 oder HBD2 zu produzieren. N2 - The probiotic Escherichia coli strain Nissle 1917 (EcN) is one of the few probiotics licensed as a medication in several countries. Best documented is its effectiveness in keeping patients suffering from ulcerative colitis (UC) in remission. This might be due to its ability to induce the production of human beta defensin 2 (HBD2) in a flagellin-dependent way in intestinal epithelial cells. In contrast to ulcerative colitis, for Crohn´s disease (CD) convincing evidence is lacking that EcN might be clinically effective, most likely due to the genetically based inability of sufficient defensin production in CD patients. As a first step in the development of an alternative approach for the treatment of CD patients, EcN strains were constructed which were able to produce human alpha-defensin 5 (HD5) or beta-defensin 2 (HBD2). For that purpose codon-optimized defensin genes encoding either the proform with the signal sequence or the mature form of human alpha defensin 5 (HD5) or the gene encoding HBD2 with or without the signal sequence were cloned in an expression vector plasmid under the control of the T7 promoter. Synthesis of the encoded defensins was shown by Western blots after induction of expression and lysis of the recombinant EcN strains. Recombinant mature HBD2 with an N-terminal His-tag could be purified by Ni-column chromatography and showed antimicrobial activity against E. coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes. In a second approach, that part of the HBD2-gene which encodes mature HBD2 was fused with yebF gene. The resulting fusion protein YebFMHBD2 was secreted from the encoding EcN mutant strain after induction of expression. Presence of YebFMHBD2 in the medium was not the result of leakage from the bacterial cells, as demonstrated in the spent culture supernatant by Western blots specific for ß-galactosidase and maltose-binding protein. The dialyzed and concentrated culture supernatant inhibited the growth of E. coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes in radial diffusion assays as well as in liquid coculture. This demonstrates EcN to be a suitable probiotic E. coli strain for the production of certain defensins. KW - Escherichia coli KW - Probiotikum KW - Rekombinante DNS KW - Genexpression KW - Defensine KW - Probiotic KW - Recombinant defensins KW - E. coli Nissle 1917 KW - HBD2 KW - HD5 KW - Antimicrobial activity KW - Secretion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72005 ER -