TY - THES A1 - Viswanathan, Aravindan T1 - Biochemical and structural characterisation of modules within the SMN complex T1 - Biochemische und strukturelle Charakterisierung von Modulen des SMN-Komplexes N2 - Cellular proteome profiling revealed that most biomolecules do not exist in isolation, but rather are incorporated into modular complexes. These assembled complexes are usually very large, consisting of 10 subunits on an average and include either proteins alone, or proteins and nucleic acids. Consequently, such macromolecular assemblies rather than individual biopolymers perform the vast majority of cellular activities. The faithful assembly of such molecular assemblies is often aided by trans-acting factors in vivo, to preclude aggregation of complex components and/or non-cognate interactions. A paradigm for an assisted assembly of a macromolecular machine is the formation of the common Sm/LSm core of spliceosomal and histone-mRNA processing U snRNPs. The key assembly factors united in the Protein Arginine Methyltransferase 5 (PRMT5) and the Survival Motor Neuron (SMN) complexes orchestrate the assembly of the Sm/LSm core on the U snRNAs. Assembly is initiated by the PRMT5-complex subunit pICln, which pre-arranges the Sm/LSm proteins into spatial positions occupied in the mature U snRNPs. The SMN complex subsequently binds these Sm/LSm units, displaces pICln and catalyses the Sm ring closure on the Sm-site of the U snRNA. The SMN complex consists of the eponoymous SMN protein linked in a modular network of interactions with eight other proteins, termed Gemins 2-8 and Unrip. Despite functional and structural characterisation of individual protein components and/or sub-complexes of this assembly machinery, coherent understanding of the structural framework of the core SMN complex remained elusive. The current work, employing a combined approach of biochemical and structural studies, aimed to contribute to the understanding of how distinct modules within the SMN complex coalecse to form the macromolecular SMN complex. A novel atomic resolution (1.5 Å) structure of the human Gemin8:7:6 sub-complex, illustrates how the peripheral Gemin7:6 module is tethered to the SMN complex via Gemin8’s C-terminus. In this model, Gemin7 engages with both Gemin6 and Gemin8 via the N- and C-termini of its Sm-fold like domain. This highly conserved interaction mode is reflected in the pronounced sequence conservation and identical biochemical behaviour of similar sub-complexes from divergent species, namely S. pombe and C. elegans. Despite lacking significant sequence similarity to the Sm proteins, the dimeric Gemin7:6 complex share structural resemblance to the Sm heteromers. The hypothesis that the dimeric Gemin7:6 functions as a Sm-surrogate during Sm core assembly could not be confirmed in this work. The functional relevance of the structural mimicry of the dimeric Gemin7:6 sub-complex with the Sm heterodimers therefore still remains unclear. Reduced levels of functional SMN protein is the cause of the devastating neurodegenerative disease, Spinal Muscular Atrophy (SMA). The C-terminal YG-zipper motif of SMN is a major hot-spot for most SMA patient mutations. In this work, adding to the existing inventory of the human and fission yeast YG-box models, a novel 2.2 Å crystal structure of the nematode SMN’s YG-box domain adopting the glycine zipper motif has been reported. Furthermore, it could be assessed that SMA patient mutations mapping to this YG-box domain greatly influences SMN’s self-association competency, a property reflected in both the human and nematode YG-box biochemical handles. The shared molecular architecture and biochemical behaviour of the nematode SMN YG-box domain with its human and fission yeast counterparts, reiterates the pronounced conservation of this oligomerisation motif across divergent organisms. Apart from serving as a multimerization domain, SMN’s YG-box also acts as interaction platform for Gemin8. A systematic investigation of SMA causing missense mutations uncovered that Gemin8’s incorporation into the SMN complex is influenced by the presence of certain SMA patient mutations, albeit independent of SMN’s oligomerisation status. Consequently, loss of Gemin8 association in the presence of SMA patient mutations would also affect the incorporation of Gemin7:6 sub-complex. Gemin8, therefore sculpts the heteromeric SMN complex by bridging the Gemin7:6 and SMN:Gemin2 sub-units, a modular feature shared in both the human and nematode SMN complexes. These findings provide an important foundation and a prospective structural framework for elucidating the core architecture of the SMN complex in the ongoing Cryo-EM studies. N2 - Systematische Untersuchungen von zellulären Bestandteilen haben gezeigt, dass viele Proteine nicht isoliert, sondern vielmehr in modularen Komplexen organisiert vorliegen. Mit durchschnittlich zehn Untereinheiten sind diese Komplexe sehr groß, wobei sie entweder ausschließlich aus Proteinen oder aber aus Proteinen und Nukleinsäuren bestehen können. Daher wird der Großteil zellulärer Aktivitäten nicht von einzelnen Biopolymeren, sondern von makromolekularen Komplexen verrichtet. Die Zusammenlagerung dieser Komplexe wird in vivo häufig von Hilfsfaktoren unterstützt, um die Aggregation der Einzelkomponenten und/oder unspezifische Wechselwirkungen zu verhindern. Ein Beispiel für eine derartige Zusammenlagerungshilfe ist die Bildung des Sm/LSm-Cores der mRNA-prozessierenden U snRNPs. Dabei wird die Anlagerung von Sm/LSm Proteinen an die U snRNAs durch eine Anzahl von Hilfsfaktoren orchestriert, die in Protein-Arginin-Methyltransferase 5 (PRMT5)- und dem Survival Motor Neuron (SMN)-Komplexen organisiert sind. Die Zusammenlagerung wird durch die PRMT5-Untereinheit pICln initiiert, die die räumliche Anordnung von Sm/LSm-Proteinen in höher-geordneten Komplexen stabilisiert. Diese werden anschließend auf den SMN-Komplex übertragen, wobei pICln verdrängt und die Verbindung mit der Sm-Seite der U snRNA sichergestellt wird. Der SMN-Komplex besteht aus dem SMN-Protein, das in einem modularen Netzwerk mit acht weiteren Proteinen (Gemins 2-8 und Unrip) interagiert. Auch wenn funktionale und strukturelle Charakterisierungen einzelner Proteinkomponenten und Module dieser Zusammenlagerungs-Maschinerie vorliegen, steht ein tiefergehendes Verständnis des strukturellen Organisation des Gesamt-Komplexes noch aus. In der vorliegenden Arbeit sollte unter Anwendung biochemischer und struktureller Techniken ein Beitrag dazu geleistet werden, die Interaktionen der verschiedenen Komponenten innerhalb des SMN-Komplexes zu verstehen, die so die dreidimensionale Organisation des SMN-Komplexes zu verstehen. Eine neuartige Kristallstruktur des humanen Gemin8:7:6-Subkomplexes bei einer Auflösung von 1.5 Å zeigt, wie der periphere Gemin7:6-Abschnitt durch den C-Terminus von Gemin8 zum SMN-Komplex dirigiert wird. In diesem Modell interagiert Gemin7 sowohl mit Gemin6 als auch Gemin8 über den N- und C-Terminus der Sm-ähnlichen Domäne. Dieser hochkonservierte Interaktionsmodus wird in der erwähnten konservierten Sequenz und dem gleichen biochemischen Verhalten ähnlicher Subkomplexe in divergenten Spezies einschließlich S. pombe und C. elegans widergespiegelt. Obwohl es keine signifikante Übereinstimmung mit der Sequenz von Sm-Proteinen gibt, weist der dimere Gemin7:6-Komplex markante strukturelle Ähnlichkeit mit dem einem Sm-Heterodimer auf. Die Annahme, der dimere Gemin7:6-Subkomplex würde als Hilfsfaktor über die direkte Interaktion mit Sm-Proteinen fungieren konnte in der vorliegenden Arbeit nicht bestätigt werden. Folglich bleibt die Funktion des dimeren Gemin7:6-Subkomplexes im Kontext der SMN-Zusammenlagerungsmaschinerie unklar. Verringerte Mengen des funktionellen SMN-Proteins sind die Ursache für die neurodegenerative Erkrankung Spinale Muskelatrophie (SMA). Das C-terminale YG-Zipper-Motiv von SMN stellt einen Hotspot für die meisten SMA-Mutationen dar. In dieser Arbeit wurde der bereits bekannten YG-Box aus H. sapiens und S. pombe eine neuartige Kristallstruktur der SMN YG-Box aus C. elegans mit einer Auflösung von 2.2 Å hinzugefügt. Zusätzlich wurde gezeigt, dass SMA-verursachende Missense-Mutationen in der YG-Box einen beträchtlichen Einfluss auf die Selbst-Interaktion von SMN haben, was aus biochemischen Versuchen mit der YG-Box aus H. sapiens und C. elegans ersichtlich wurde. Der molekulare Aufbau und das biochemische Verhalten der SMN YG-Box aus C. elegans, S. pombe und H. sapiens betont die Konservierung dieses Oligomerisierungsmotives über mehrere Organismen hinweg. Neben der Funktion als Multimerisationsdomäne dient die YG-Box von SMN auch als Interaktionsplattform für Gemin8. Eine systematische Untersuchung von SMA-verursachenden Missense-Mutationen ergab, dass die Einbindung von Gemin8 in den SMN-Komplex durch definierte Substitutionen massiv beeinflusst wird. Interessanterweise ist dieser Bindungsdefekt unabhängig vom SMN-Oligomerisierungsstatus. Demzufolge würde diese Klasse von SMA-Mutationen spezifisch die Inkorporation des Gemin7:6-Subkomplexes beeinflussen. Die Resultate dieser Arbeit bilden eine wichtige Grundlage für weitere strukturelle Untersuchungen des SMN-Komplexes über Kryo-Elektronenmikroskopie. KW - SMN complex KW - Macromolecular machine KW - Structural organisation KW - Proteom KW - Motoneuron Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-194749 ER - TY - THES A1 - Glinka, Michael T1 - Charakterisierung der Rolle des β-Aktin mRNA bindenden Proteins heterogenous nuclear ribonucleoprotein-R für das Axonenwachstum von Motoneuronen T1 - Characterisation of the role of the β-Aktin mRNA binding protein heterogenous nuclear ribonucleoprotein-R for the axonal growth of motoneurons N2 - Bei Yeast Two-Hybrid Untersuchungen wurde in unserer Arbeitsgruppe das RNA-Bindungsprotein hnRNP-R als Interaktionspartner von SMN gefunden und es konnte gezeigt werden, dass hnRNP-R mit SMN in Axonen von primären Motoneuronen kolokalisiert (Rossoll et al., 2002). hnRNP-R assoziiert mit der β-Aktin mRNA und nach Überexpression kommt es zu einer Akkumulation von β-Aktin in den Wachstumskegeln von neuronalen Zellen, sowie zu verstärktem Neuritenwachstum bei PC12 Zellen. Wird die SMN-Bindungsdomäne von hnRNP-R deletiert, ist dieser Effekt stark reduziert (Rossoll et al., 2003). Auf diesen in vitro Befunden ist die Hypothese begründet, dass hnRNP-R an der Translokation der β-Aktin mRNA in die Wachstumskegel von neuronalen Zellen beteiligt ist. Deshalb wurde im Rahmen dieser Arbeit die Rolle von hnRNP-R bei der Entwicklung in Neuronen des Nervensystems näher untersucht. Dazu wurden Zebrafisch Embryonen als in vivo Modellsystem für Morpholino vermittelte Knockdown Untersuchungen gewählt. Zunächst wurde ein gegen murines Protein hergestelltes hnRNP-R Antiserum charakterisiert und gezeigt, dass es das Zebrafisch Protein spezifisch erkennt. Dieses Antiserum wurde in Western Blot Analysen verwendet um den hnRNP-R Knockdown in Zebrafisch Embryonen zu verifizieren. Bei den hnRNP-R Morpholino injizierten Embryonen konnten dosisabhängig axonale Veränderungen beobachtet werden. Diese Veränderungen stimmen mit einem Krankheitsmodell für SMA im Zebrafisch überein. Es konnte gezeigt werden, dass das Überleben primärer Motoneurone in Zebrafisch Embryonen nicht beeinträchtigt ist und dass andere neuronale Zellen keine signifikante Beeinflussung durch einen hnRNP-R Knockdown erfahren. Um die Spezifität des axonalen Phänotyps, der durch hnRNP-R Knockdown hervorgerufen wurde zu belegen, wurde mit muriner hnRNP-R mRNA ein Rescue-Experiment durchgeführt. Es konnte gezeigt werden, dass dabei der axonale Phänotyp weitestgehend wieder aufgehoben wurde. Parallel zu den Zebrafisch Experimenten wurde ein hnRNP-R Knockout Konstrukt mittels homologer Rekombination in Escherichia coli hergestellt und in murine embryonale Stammzellen elektroporiert. Die Charakterisierung einer hnRNP-R Knockout Maus könnte weitere bedeutende Einsichten in die in vivo Funktionen von hnRNP-R bei der Embryonalentwicklung und speziell der Entwicklung von Motoneuronen gewähren. Um der Frage nach zu gehen, welche mRNAs in Wachstumskegeln von Axonen primärer Maus Motoneuronen zu finden sind oder durch Transportprozesse lokal akkumuliert sind,wurden Versuche unternommen, um mittels Laser-Mikrodissektion einzelne Wachstumskegel von Motoneuronen für Untersuchungen der enthaltenen mRNAs zu gewinnen. Erstmalig ist es im Rahmen dieser Arbeit gelungen, kompartimentalisierte Kulturen von primären Motoneuronen der Maus zu etablieren. Damit wurde die Grundlage geschaffen, um RNA-Profile von distalen Zellkompartimenten wie den Axonen und Wachstumskegeln zu bestimmen. N2 - In previous yeast two-hybrid studies, we have shown that hnRNP-R is an interaction partner of SMN and that it co-localises with SMN in axons of primary motor neurons (Rossoll et al., 2002). hnRNP-R associates with the β-actin mRNA and after overexpression, an accumulation of β-actin in growth cones of neuronal cells and elongated neurite growth of pc12 cells could be observed. If the SMN binding domain of hnRNP-R was deleted, this effect was strongly reduced (Rossoll et al., 2003). On this in vitro observations the hypothesis is based, that hnRNP-R plays an important role in the translocation of β-actin mRNA to the growth cones of neuronal cells. For that reason, the role of hnRNP-R in the development of neuronal cells of the nervous system was investigated in more detail, in line with this thesis. We have chosen embryonic zebrafish as an in vivo model system for morpholino mediated knockdown analysis of hnRNP-R. First of all an antiserum that has been generated against murine hnRNP-R protein was characterised and it could be shown that it specifically recognises the zebrafish protein. This antiserum was used in western blot analysis to verify the hnRNP-R knockdown in embryonic Zebrafish. Dose dependent axonal phenotypes could be described in hnRNP-R morpholino injected embryos, that resembled the alterations, observed in a disease model for SMA in zebrafish. We could show that the survival of motor neurons in zebrafish embryos was not impaired and that other populations of neuronal cells, were not significantly affected by the hnRNP-R knockdown. To prove the specificity of the axonal phenotype after hnRNP-R knockdown, a rescue experiment with co-injected mouse hnRNP-R mRNA has been performed, that nearly abolished the axonal phenotype. In parallel to the zebrafish experiments an hnRNP-R knockout construct was made by homologues recombination in Escherichia coli. This construct has been electroporated into embryonic stem cells of mice, and obtained clones have been screened. The characterisation of an hnRNP-R knockout mouse could reveal important insights of in vivo functions of hnRNP-R in embryonic development and especially the development of motor neurons. To answer the question, which mRNAs are located in growth cones of primary mouse motor neurons, or are locally accumulated due to mRNA transport processes, growth cones of primary mouse motor neurons have been cut by laser micro dissection. For the first time, compartmentalised cell cultures of primary motor neurons could be established during this thesis, providing the background to generate detailed RNA profiles of distal cell compartments like axons and growth cones. KW - Heterogene Ribonucleoproteine KW - Actin KW - Motoneuron KW - Axon KW - Axonaler Transport KW - hnRNP-R KW - Morpholino KW - Knockdown KW - β-Aktin KW - kompartimentierte Kulturen KW - primäre Motoneurone KW - BDNF KW - axonal transport KW - hnRNP-R KW - morpholino knockdown KW - β-actin KW - compartimentalized cultures KW - primary notoneuron KW - BDNF Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57410 ER - TY - THES A1 - Hochgräfe, Katja T1 - Cre-loxP based mouse models to study prionpathogenesis in the motor nervous system N2 - Prion diseases such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative disorders characterized by brain lesions and the accumulation of a disease-associated protein, designated PrPSc. How prions proceed to damage neurons and whether all or only subsets of neurons have to be affected for the onset of the clinical disease is still elusive. The manifestation of clinical prion disease is characterized by motor dysfunctions, dementia and death. Furthermore loss of motor neurons (MN) in the spinal cord is a constant finding in different mouse models of prion disease, suggesting that MN are vulnerable cells for triggering the onset of clinical symptoms. To determine whether the protection of MN against prion induced dysfunctions is an approach for holding the disease at the sub-clinical level, we established a novel conditional model for Cre-mediated expression of a dominant-negative PrP mutant (PrPQ167R) in the cells of interest. Dominant-negative PrP mutants provide protection of prion induced dysfunctions by inhibiting prion replication. Transgenic mice were generated carrying a floxed LacZ marker gene followed by the coding sequence of PrPQ167R under control of the human ubiquitin C promoter. Two Cre strains have been used to direct PrPQ167R expression either to a subset of MN of the spinal cord (Hb9-Cre) or to various neuronal cell populations of the spinal cord and brain (NF-L-Cre). Transgenic mice were infected with mouse-adapted prions via different inoculation routes (intranerval, intracerebral and intraperitoneal) and monitored for effects on incubation time and pathology. Tg floxed LacZ-PrPQ167R/NF-L-Cre mice showed about 15% prolonged survival upon intraperitoneal low dose prion infection, whereas survival of Tg floxed LacZ-PrPQ167R/Hb9-Cre mice was comparable to control littermates. The results suggest that the protection of spinal MN prolongs the incubation period but is not sufficient to completely inhibit clinical prion disease. In a second approach, Cre was transferred into the hind limb muscles of transgenic mice via a double-stranded adeno-associated virus vector (dsAAV2-Cre). The goal of this strategy was to target a broader cell population and thus to enhance expression levels of protective PrPQ167R in the spinal cord of Tg floxed-LacZ-PrPQ167R mice. After intramuscular (i.m.) application of dsAAV2-Cre, exhibiting a physical titer of 5x1010 GP/ml, recombinant transgenic DNA was detected only in the muscle tissue, pointing out that functional Cre-recombinase was expressed at the side of virus application. However, dsAAV2-Cre did neither induce recombination of transgenic DNA in the spinal cord or brain nor expression of dominant-negative PrPQ167R. In conclusion the dsAAV2-Cre vectors system needs further improvement to achieve efficient transport from muscle tissue to the central nervous system (CNS). 105 7 SUMMARY The lymphoreticular system (LRS) is an early site of prion replication. In splenic tissue prion infectivity is associated with follicular dendritic cells (FDC) as well as with Band T-lymphocytes. However, it is still unknown if those cell types are able to replicate the infectious agent or if other PrP-expressing cell types are engaged. To investigate if neurons and in particular MN are involved, transgenic mice carrying one allele of floxed Prnp (lox2+=��) and either one allele of Hb9-Cre or NF-L-Cre were generated on a Prnp0=0 background. Therefore a conditional PrP knockout was established in a subset of MN of the spinal cord (Hb9-Cre) or in various neuronal populations of the spinal cord and brain (NF-L-Cre). Transgenic mice were inoculated with prions to study the accumulation of PrPSc and prion infectivity in spleen and spinal cord at an early time point after infection. The findings show that PrPSc accumulation in mice with MN-specific PrP depletion (lox2+=��/ Hb9-Cre) was comparable to control littermates, while pan-neuronal PrP deficient mice (lox2+=��/NF-L-Cre) were not able to accumulate PrPSc in splenic tissue until 50 days post inoculation. Moreover spleens of lox2+=��/NF-L-Cre mice exhibited a clearly reduced prion infectivity titer, suggesting that accumulation of prions in the spleen is dependent on PrP expression in the nervous tissue. N2 - Prionenerkrankungen, wie Scrapie beim Schaf, die bovine spongiforme Enzephalopathie (BSE) beim Rind oder die Creutzfeldt-Jakob-Krankheit (CJD) beim Menschen sind letale, neurodegenerative Erkrankungen des zentralen Nervensystems (ZNS). Typische Merkmale der Erkrankung sind neben Neuronenverlust die Akkumulation des mit der Krankheit assoziierten Proteins PrPSc im Gehirn infizierter Individuen. Wie die Akkumulation von Prionen zu Neurodegeneration führt und welche Regionen des ZNS für die klinische Erkrankung verantwortlich sind, ist bisher unbekannt. Charakteristische, klinische Symptome von Prionenkrankheiten sind motorische Störungen sowie Demenz in einem späten Stadium der Erkrankung. Außerdem ist der Verlust von Motoneuronen (MN) im Rückenmark ein konstanter Befund im Tiermodell, was eine Rolle des motorischen Nervensystems bei der Prionpathogenese vermuten lässt. In dieser Arbeit sollte daher untersucht werden, ob der Schutz von MN vor Prionen induzierten Dysfunktionen den Ausbruch der klinischen Erkrankung verzögern kann. Dazu wurde ein konditionales Mausmodell mit Cre-induzierbarer Expression einer dom- inant-negativen PrP-Mutante (PrPQ167R) hergestellt. Dominant-negative PrP Mutanten schützen vor Prionen induzierten Schädigungen, indem sie die Replikation von Prionen inhibieren. Das Transgen besteht aus dem humanen Ubiquitin C Promoter, einem „gefloxten” LacZ Markergen und der kodierenden Sequenz von PrPQ167R. Die Kreuzung von Tg floxed LacZ-PrPQ167R Mäusen mit der Hb9-Cre Linie bewirkt eine MNspezifische Expression von PrPQ167R im Rückenmark, während das Einkreuzen eines NF-L-Cre Allels die Expression von PrPQ167R in den meisten Neuronen des Rückenmarks sowie in verschiedenen motorischen Kerngebieten des Gehirns zur Folge hat. Transgenen Mäuse wurden auf verschiedenen Routen (intranerval, intrazerebral und intraperitoneal) mit Maus-adaptierten Prionen infiziert und der Effekt von PrPQ167R auf die Inkubationszeit und Pathologie der Tiere untersucht. Während Tg floxed LacZPrP Q167R/NF-L-Cre Mäuse eine um 15% verlängerte Inkubationszeit aufwiesen, war bei Tg floxed LacZ-PrPQ167R/Hb9-Cre Mäusen kein Überlebensvorteil zu beobachten. Somit verlängert der Schutz von MN des Rückenmarks zwar die Inkubationszeit, ist aber nicht ausreichend, um den klinischen Ausbruch der Erkrankung zu verhindern. Um eine größere Zellpopulation im Rückenmark von Tg floxed LacZ-PrPQ167R Mäusen und so eine stärkere Expression von PrPQ167R zu erreichen, wurde ein viraler Gentransfer von Cre-Rekombinase durchgeführt. Dazu wurden doppelsträngige, Creexprimierende Adeno-assoziierte Virus Vektoren (dsAAV2-Cre) bilateral in die Muskulatur der Hinterbeine von Tg floxed LacZ-PrPQ167R Mäusen injiziert. Die Applikation von dsAAV2-Cre, mit einem physikalischen Virus-Titer von 5x1010 GP/ml, führte ausschließlich im Muskelgewebe zur Expression von enzymatisch aktiver Cre-Rekombinase und folglich zur Rekombination der transgenen DNA. Im Rücken- 107 8 ZUSAMMENFASSUNG mark oder Gehirn war keine rekombinante DNA detektierbar. Auch auf Protein-Ebene konnte die Expression von PrPQ167R weder im Muskel noch im Rückenmark oder Gehirn nachgewiesen werden. Um den Transport von dsAAV2-Cre vom Applikationsort bis in das ZNS zu gewährleisten und Cre stabil zu exprimieren, ist demnach eine weitere Optimierung des dsAAV2-Cre Vektorsystems notwendig. Prionen replizieren im lymphoretikulären System (LRS) bereits in einem frühen Stadium der Erkrankung. In der Milz ist Prionen-Infektiosität in follikulär dendritischen Zellen (FDC) sowie in B- und T-Lymphozyten lokalisiert. Ob noch andere PrP exprimierende Zellen an der Prionen-Replikation im LRS beteiligt sind, ist unklar. Um die Beteiligung von Neuronen und MN an der Akkumulation von Prionen im LRS zu untersuchen, wurden transgene, neuronal PrP defiziente Mäuse generiert. Ein Neuronen-spezifischer bzw. MN-spezifischer Knockout von PrP wurde durch Kreuzung von transgenen lox2+=�� Mäusen, welche ein „gefloxtes“ Prnp Allel Prnp auf einem Prnp0=0 Hintergrund tragen, mit NF-L-Cre oder Hb9-Cre Mäusen erreicht. Nach Prionen-Infektion von lox2+=��/NF-L-Cre und lox2+=��/Hb9-Cre Mäusen wurde die Akkumulation von PrPSc und Prionen-Infektiosität in der Milz und im Rückenmark am Tag 50 nach der Infektion analysiert. Während die Replikation von PrPSc in der Milz von Mäusen mit MN-spezifischem PrP Knockout (lox2+=��/Hb9-Cre) nicht beeinträchtigt war, war in pan-neuronal PrP defizienten Mäusen (lox2+=��/NF-L-Cre) keine Akkumulation von PrPSc nachweisbar. Zudem war die Prionen-Infektiosität in der Milz von lox2+=��/NF-L-Cre Mäusen deutlich reduziert. Die Ergebnisse weisen darauf hin, dass die Akkumulation von PrPSc und Prionen-Infektiosität in der Milz abhängig von neuronaler PrP Expression ist. KW - Prionkrankheit KW - Pathogenese KW - Maus KW - Motoneuron KW - Prion KW - pathogenesis Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45967 ER - TY - THES A1 - Drexl, Hans Henning T1 - Der Einfluss von R-Roscovitine und Valproat auf das Wachstums- und präsynaptische Differenzierungsverhalten SMN-defizienter Motoneurone T1 - The Effects of R-Roscovitine and Valproic Acid on Axonal Growth and Presynaptic Differentiation of Smn-deficient Motoneurons N2 - Die spinale Muskelatrophie ist eine monogenetische Erkrankung, die bereits im Kindesalter aufgrund von Motoneurondegeneration zu Muskelatrophie führt und nicht selten einen tödlichen Verlauf nimmt. Ursache der Erkrankung ist ein Mangel an SMN-Protein. Der hierfür verantwortliche Verlust des SMN1-Gens kann durch das SMN2-Gen aufgrund eines gestörten Spleißprozesses am Exon 7 nicht kompensiert werden. Neben Aufgaben in der RNA-Prozessierung wird das SMN-Protein für den axonalen Transport von Ribonucleinpartikeln in Motoneuronen benötigt, was bei der SMA zu pathologischem Wachstum, Differenzierung und Funktion der Motoraxone führt. Im Rahmen dieser Arbeit wurden kultivierte Motoneurone aus einem Mausmodell für die SMA Typ I (Genotyp Smn-/-;SMN2) mit zwei unterschiedlichen Substanzen behandelt und deren Wirkungen auf das präsynaptische Differenzierungsverhalten der Motoneurone verglichen: R-Roscovitine, ein Agonist/Modulator spannungsabhängiger N-Typ- und P/Q-Typ-Kalziumkanäle, welcher zudem eine CDK-inhibierende Wirkung besitzt, sowie Valproat, ein HDAC-Inhibitor, der eine stimulierende Wirkung auf die SMN-Transkription hat. Es zeigte sich, dass R-Roscovitine in der Lage ist, das pathologische Wachstums- und präsynaptische Differenzierungsverhalten der Smn-defizienten Motoneurone zu normalisieren, ohne hierbei Einfluss auf die erniedrigte Menge an Smn-Protein zu nehmen. Die Behandlung mit Valproat beeinflusst hingegen weder die Menge an Smn-Protein, noch die pathologische Differenzierung der Wachstumskegel Smn-defizienter Motoneurone. Erklären lassen sich diese Effekte in erster Linie durch den Agonismus an spannungsabhängigen Kalziumkanälen durch R-Roscovitine. Durch vermehrten Kalziumeinstrom kommt es zur Normalisierung von Struktur und Funktion der Wachstumskegel. Ein CDK-vermittelter Effekt scheint unwahrscheinlich. Obgleich die genauen Vorgänge noch nicht verstanden sind, zeigen diese Ergebnisse, dass sich Smn-defiziente Motoneurone normal entwickeln können, wenn die hierfür erforderlichen kalziumabhängigen präsynaptischen Differenzierungssignale korrekt ausgelöst werden. Bei weiterer Erforschung sind Therapeutika denkbar, die in Zukunft die überwiegend genetisch orientierten Therapieansätze zur Hochregulation der SMN-Expression bei SMA-Patienten über einen von der Genetik unabhängigen Wirkmechanismus unterstützen können. N2 - Spinal muscular atrophy (SMA) is a monogenetic disease mostly of children and young adults. The affected show motoneuron degeneration, paralysis and muscular atrophy and the disease is frequently leading to death. SMA is caused by the loss of the SMN1 (survival motoneuron1) gene and thereby deficiency of the SMN protein. A second SMN gene in humans (SMN2) contains a mutation in Exon 7, why most of its transcripts are alternatively spliced and therefore truncated. Thus, the SMN2 gene is not able to compensate a SMN1 loss. The SMN protein is necessary for the assembly of snRNP particles, which are essential for RNA processing. In motoneurons, the SMN protein is additionally important for the axonal transport of mRNA. Therefore, cultured motoneurons from Smn-deficient mouse embryos show alterations in axonal growth as well as in size, differentiation and function of their growth cones. Especially low density of ß-actin and N-type (Cav2.2) voltage-gated calcium channels (VGCCs) and thereby reduced frequency of spontaneous Ca2+ transients have been described. These transients normally work as signals for differentiation on the growth cones. This work demonstrates that application of R-Roscovitine, an inhibitor of Cyclin dependent kinases (CDKs) 2 and 5 as well as a modifier/opener of VGCCs (N-type and P/Q-type), enhances VGCC accumulation and levels of ß-actin protein in growth cones and ameliorates defects of growth cone size and axon elongation in Smn-deficient motoneurons. These compensatory effects are primarily mediated by the enhanced VGCC clustering and hereby resuscitation of the presynaptic excitability; the low level of SMN protein in these cells is not risen by R-Roscovitine. Valproic acid, a well-known anti-epileptic drug and inhibitor of the histon-deacetylase (HDAC), has been shown to rise the level of SMN protein in different cell types by unspecific upregulation of transcription. Here, treatment of Smn-deficient cultured motoneurons with Valproate had no effects neither on the level of SMN protein nor on the VGCC accumulation in growth cones. In contrast to R-Roscovitine, Valproate inhibits VGCCs. These results underline the importancy of Ca2+ homeostasis for proper motoneuron differentiation and function. These mechanisms may offer an alternative approach for SMA treatment besides the existing gene-based strategy. KW - Spinale Muskelatrophie KW - R-Roscovitine KW - Valproat KW - SMA KW - Motoneuron KW - Zellkultur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171696 ER - TY - THES A1 - Fischer, Matthias T1 - Der Einfluß der Ribosomale S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur T1 - Der Einfluß der Ribosomalen S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur N2 - In dieser Arbeit sollte die Funktion der Ribosomalen S6 Kinase 2 (RSK2) auf neuronaler Ebene untersucht werden. Dahingehend gab es, z.B. auf Grund der Phänotypen von Fliegen und Mäusen mit Mutationen im entsprechenden Gen oder von Patienten mit Coffin-Lowry-Syndrom (CLS) nur Vermutungen. Es bestand letztlich die Hoffnung, einen Beitrag zur Aufklärung der Pathophysiologie des CLS zu leisten. Es stellte sich auf Grund von Experimenten sowohl in vivo als auch in vitro in verschiedenen Modellsystemen in dieser Arbeit heraus, daß RSK2 einen negativen Einfluß auf das Neuriten- und Synapsenwachstum hat. In kultivierten Motoneuronen führte der KO von RSK2 zu längeren Axonen und die Überexpression eines konstitutiv aktiven RSK2-Konstrukts zu kürzeren Axonen. In PC12-Zellen führte die Expression von konstitutiv aktiven RSK2 Konstrukten zur Verkürzung der Neuriten und die Expression eines Kinase-inaktiven RSK2 Konstrukts zu längeren Neuriten. In vivo war die neuromuskuläre Synapse bei RSK2-KO Mäusen vergrößert und hatte bei Drosophila rsk Mutanten mehr Boutons. Das RSK2-Protein ist in Motoneuronen der Maus und in überexprimierter Form in den Boutons der neuromuskulären Synapse bei Drosophila nachweisbar. Damit wurde zum ersten Mal die Funktion von RSK2 auf neuronaler Ebene beschrieben. Bezüglich des Mechanismus, wie RSK2 das Nervenwachstum beeinflußt gab es deutliche Hinweise, die dafür sprechen, daß RSK2 dies über eine in der Literatur schon häufiger beschriebene Hemmung der MAPK ERK1/2 erreicht. Für diese Hypothese spricht die Tatsache, daß die ERK-Phosphorylierung in murinen Motoneuronen und im Rückenmark embryonaler Mäuse der RSK2-Mutante erhöht ist und der Axonwachstumsdefekt durch eine Hemmung von MEK/ERK behoben werden kann. Auch ist die ERK-Phosphorylierung an der murinen Muskel-Endplatte in der Mutante erhöht. Zudem zeigen genetische Epistasis-Experimente in Drosophila, daß RSK die Bouton-Zahl über ERK/RL hemmt. RSK scheint also in Drosophila von der Funktion her der RSK2-Isoform in Wirbeltieren sehr ähnlich zu sein. Ein weiteres wichtiges Ergebnis ist die Beobachtung, daß RSK2 bei Motoneuronen keinen wesentlichen Einfluß auf das Überleben der Zellen in Gegenwart neurotropher Faktoren hat. Möglicherweise spielen hier redundante Funktionen der RSK Familienmitglieder eine Rolle. Ein bislang unerklärter Befund ist die reduzierte Frequenz spontaner Depolarisationen bzw. damit einhergehender Ca2+ Einströme bei RSK2-KO Motoneuronen in Zellkultur. Die Häufigkeit und Dichte von Ca2+-Kanälen und aktive Zonen Proteinen war in Motoneuronen nicht von der Anwesenheit des RSK2-Proteins abhängig. Im Hippocampus konnte außerdem das RSK2-Protein präsynaptisch in den Moosfaser-Boutons der CA3 Region nachgewiesen werden. Es befindet sich auch in den Pyramidenzellen, aber nicht in den Pyramidenzell-Dendriten in CA3. Bezüglich der Bedeutung dieser Befunde für die Aufklärung der Pathologie des CLS ist zu folgern, daß der neuro-psychologische Phänotyp bei CLS Patienten wahrscheinlich nicht durch reduziertes Überleben von Neuronen, sondern eher durch disinhibiertes Axonwachstum oder Synapsenwachstum bedingt ist. Dies kann grob sowohl für die peripheren als auch die zentralen Defekte gelten, denn die Synapsen im ZNS und am Muskel sind in ihrer molekularen Ausstattung z.B. im Bereich der Vesikel, der aktiven Zonen oder der Transmitterausschüttung sehr ähnlich. Weiterhin könnte eine veränderte synaptische Plastizität u.a. an der Moosfaser-Pyramidenzell-Synapse in der CA3 Region des Hippocampus eine Rolle bei den kognitiven und mnestischen Einschränkungen der Patienten spielen. Die Entdeckung, daß aktiviertes ERK bei den beobachteten Effekten eine Rolle spielt kann für die Entwicklung von Therapiestrategien eine wertvolle Erkenntnis sein. N2 - In this thesis the function of the Ribosomal S6 Kinase 2 (RSK2) on the neuronal level should be investigated. Due to the phenotypes of flies and mice with mutations in the respective gene or of Coffin-Lowry-Syndrome (CLS) patients there existed only rough speculations. An aim was to make a contribution to the elucidaton of the pathophysiology of the CLS. In this thesis it could be shown by experiments in vivo as well as in vitro in different model systems, that RSK2 has a negative influence on neurite- and synapse growth. In cultivated motoneurons the KO of RSK2 increased the length of axons and the overexpression of a constitutive acitve RSK2-construct reduced axon length. In PC12 cells expression of constitutive active RSK2-constructs reduced neurite-length and expression of a kinase-dead RSK2-construct increased neurite-length. In vivo the size of the neuromuscular synapse of RSK2-KO mice and the bouton number at the Drosophila neuromuscular junction was increased. The RSK2-Protein could be found in mouse motoneurons and, if overexpressed, in boutons at the Drosophila neuromuscular junction. These results show for the first time, which function RSK2 has on the neuronal level. With respect to the mechanism, how RSK2 influences neurite growth, there was evidence, that RSK2 does this by inhibition of the MAPK ERK1/2. The latter has been described in literature before. Arguments for this are the findings, that ERKphosphorylation in mouse motoneurons and in embryonal spinal cord of the RSK2 mouse mutant is increased and that the axon-growth defect can be rescued by inhibition of MEK/ERK. Besides this, ERK-phosphorylation at the neuosmuscular endplate of RSK2-KO mice is increased. Moreover, genetic epistasis experiments in Drosophila show, that RSK inhibits bouton numbers via ERK/RL. So, Drosophila RSK seems to resemble, according to its function, the vertebrate RSK2-isoform. A further important result is the observation, that RSK2 has no effect on survival of motoneurons in the presence of neurotrophic factors. Possibly redundant functions of RSK family members are responsible for this. A so far unexplained finding is the reduced frequency of spontaneous depolarisations with concomitant Ca2+ Influx in cultured RSK2-KO Motoneurons. The amount and density of Ca2+ channels and active zone proteins was not dependent on the presence of the RSK2-Protein in motoneurons. In the hippocampus the RSK2-Protein could be found presynaptically in mossy-fiber boutons in the CA3 region. Moreover, it is localized in pyramidal cells, but not in the pyramidal cell dendrites in the CA3 region. With respect to the impact of these findings on the understanding of the CLS pathology, it is, according to the results of this thesis, probably not caused by reduced survival of neurons, but by disinhibited axon and synapse growth. This may account roughly for peripheral as well as central defects, because synapses in the central nervous system and at the muscle are very similar with respect to the molecular organization for example of vesicles, the active zone or transmitter release. Furthermore, a change in synaptic plasticity for example at the mossy-fiber pyramidal cell synapse in the CA3 region of the hippocampus could lead to the cognitive and mnestic deficits in CLS patients. The finding that activated ERK plays a role in the observed effects can guide the way for new therapeutic strategies. KW - Ribosom KW - Kinasen KW - Axon KW - Wachstum KW - RSK2 KW - Motoneuron Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48341 ER - TY - THES A1 - Moradi, Mehri T1 - Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons T1 - Rolle der α-, β- und γ-Aktin Isoformen bei Regulation von Dynamik und Stabilität des Zytoskeletts während des Axonwachstums und beim Ausbilden von axonalen Verzweigungen in Motoneuronen N2 - In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other’s loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons. N2 - In stark polaren Zellen wie den Neuronen ist die Etablierung neuronaler Netzwerke ein entscheidender Faktor bei der Entwicklung des zentralen Nervensystems und spielt für die adulte Plastizität eine wesentliche Rolle. Besonders die Aktindynamik ist wichtig für das Neuritenwachstum, die axonale Wegfindung und Verzweigung, sowie die Synaptogenese. Motoneurone bilden mehrere tausend terminale Verzweigungen aus, um neuromuskuläre Endplatten (NMJ) zu innervieren. Die axonale Verzweigung ist ein fundamentales Ereignis bei Ausbildung synaptischer Verbindungen zwischen Motoneuron und innerviertem Muskel. Die Axonverzweigung geschieht durch die Polymerisierung von Aktin entlang des Axonschafts, was zur Entstehung von Filopodien und Lamellopodien führt. Allerdings ist die genaue Funktion der drei Aktin-Isoformen (α-, β- and γ-Actin), im Zusammenhang mit der Regulation der Filopodienstabilität und deren Dynamik, noch weitestgehend unbekannt. Somit konnten wir in dieser Arbeit mit Hilfe hoch sensitiver in situ Hybridisierungs- und qRT PCR Techniken zeigen, dass in primären Mausmotoneuronen alle drei Aktinisoformen (α-, β- und γ) exprimiert, und deren Transkripte entlang des axonalen Kompartiments transportiert werden. Unsere FRAP Daten weisen darauf hin, dass α-, β- und γ-Aktin sowohl im Wachstumskegel als auch an sogenannten „Translation Hot Spots“ innerhalb axonaler Verzweigungspunkte lokal synthetisiert werden. Anhand von „Live Cell Imaging“ Experimenten konnten wir dann zeigen, dass ein α-Aktin Knockdown die Dynamik axonaler Filopodien stark reduziert, und als Folge, die Anzahl von axonalen Verzweigungen und die Axonlänge verringert ist. Hingegen geht ein β-Aktin Knockdown mit reduzierter Filopodiendynamik im Wachstumskegel und betroffener Differenzierung präsynaptischer Strukturen einher. Veränderungen des axonalen Wachstum und der Filopodiendynamik sind ebenfalls bei einem γ-Aktin Knockdown zu beobachten. Diese Daten weisen darauf hin, dass die drei Aktinisoformen unterschiedliche Funktionen bei der Entwicklung von Motoraxonen haben. Darüber hinaus zeigen unsere Daten, dass die Herunterregulation einer Aktinisoform durch eine erhöhte Expression der beiden anderen Isoformen kompensiert wird. Dieser Kompensationsmechanismus erlaubt es, die gesamte Aktinmenge und somit die F-Aktin-Polymerisation in der Zelle aufrechtzuerhalten. Sehr interessant dabei ist die Beobachtung, dass nach einem α- oder γ-Actin Knockdown das G/F-Verhältnis verändert ist, so dass die Menge an β-Aktin im G-Aktin Pool steigt und im F-Aktin Pool abnimmt. Daher beruhen Polymerisation und Stabilität von β-Aktin auf den α-, und γ-Aktinisoformen. Zusammenfassend lässt sich sagen, dass alle drei Aktinisoformen übergreifende Funktionen während Wachstum und Differenzierung von Motoneuronen haben. Im Zellkörper von sich entwickelnden Motoneuronen übernehmen sie ähnliche Aufgaben und können sich somit gegenseitig kompensieren. Im Gegensatz dazu sind die Funktionen im axonalen Kompartiment wesentlich spezifischer. Hier reguliert β-Aktin axonales Wachstum und Plastizität, während α- und γ-Aktin eine entscheidende Rolle bei der Ausbildung axonaler Verzweigungen haben. Unsere Arbeit lässt nun Rückschlüsse über mögliche Funktionen des SMN Proteins beim Aufbau der sogenannten „RNA Granules“ und lokaler Proteinbiosynthese der verschiedenen Aktinisoformen in primären Mausmotoneuronen zu. KW - Motoneuron KW - Spinale Muskelatrophie KW - Actin KW - Actin Dynamics KW - Isomer KW - Motoneurons KW - Axon Branching KW - Spinal Muscular Atrophy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147453 ER - TY - THES A1 - Pasedag, Saskia Maria T1 - Differenzielle Wirkungen neurotropher Faktoren auf das Axon-und Dendritenwachstum von Motoneuronen T1 - Differential effects of neurotrophic factors on axonal and dendritic growth of motoneurons N2 - In der vorliegenden Dissertation wurde die subzelluläre Lokalisation der Rezeptoren für die neurotrophen Faktoren BDNF, CNTF und GDNF in primären embryonalen und adulten Motoneuronen erstmalig genau charakterisiert. Die Rezeptoruntereinheiten des BDNF und CNTF Rezeptors, TrkB, p-TrkB, gp130 und p-Stat3, sind im Perikaryon, in Dendriten, im Axon und an den Axonterminalen bzw. Wachstumskegeln von Motoneuronen lokalisiert. Dabei sind die nativen Formen (TrkB, gp130) im Axon überwiegend membranständig, die aktivierten Formen (p-TrkB, p-Stat3) überwiegend im Inneren des Axons lokalisiert. Demgegenüber sind die Rezeptoruntereinheiten des GDNF Rezeptors, Ret und p-Ret, besonders stark in den Dendriten exprimiert. Auch im Perikaryon und an der neuromuskulären Endplatte sind Ret und p-Ret lokalisiert, nicht jedoch im Axon. Im zweiten Teil der Arbeit wurde das durch neurotrophe Faktoren bedingte Neuritenwachstum genau quantifiziert. Dabei wurde zwischen einer Stimulation des Axon- bzw. des Dendritenwachstums differenziert. Die mit GDNF behandelten Dendriten werden etwa doppelt so lang wie die Dendriten, der mit BDNF oder CNTF behandelten Motoneurone. GDNF ist somit ein potenter Stimulator des Dendritenwachstums bei isolierten primären Motoneuronen. Dieser Befund korreliert gut mit der starken Expression von Ret und p-Ret in den Dendriten. Des Weiteren wurde eine Analyse der Interaktion der neurotrophen Faktoren mit dem glutamatergen AMPA Rezeptor in Hinblick auf das Neuritenwachstum durchgeführt. Dabei zeigte sich, dass die Interaktion zwischen neurotrophen Faktoren und dem AMPA Rezeptor besonders für das Dendritenwachstum von Bedeutung ist. Die klinische Bedeutung neurotropher Faktoren und deren Rezeptoren wird im dritten Teil der Arbeit dargestellt. Die pmn Maus ist ein Mausmodell für humane degenerative Erkrankungen des Motoneurons, wie der ALS und der SMA. Pmn Motoneurone, die mit BDNF oder GDNF kultiviert werden, weisen den charakteristischen axonalen Wachstumsdefekt der pmn Motoneurone auf und werden nur etwa halb so lang wie gesunde Kontrollmotoneurone. Bemerkenswerterweise führt die Behandlung der pmn Motoneurone mit CNTF zu einer kompletten Remission des axonalen Wachstumsdefekts, so dass die Axone eine normale Axonlänge erreichen. Auch die Anzahl der pathologischen axonalen Schwellungen werden in vitro durch CNTF stark reduziert. CNTF scheint demnach der interessanteste neurotrophe Faktor für eine Behandlung degenerativer Motoneuronerkrankungen zu sein. N2 - Neurotrophins are important factors for many different functions of motoneurons, such as survival, neurite growth, as well as neuromuscular signalling. Neurotrophin receptors are therefore thought to be differently distributed in dendrites and axons. However, their precise localization and regulation in motoneurons were not well defined. This thesis characterized the exact subcellular localisation of the BDNF, CNTF and GDNF receptor subunits on adult and embryonic motoneurons. The BDNF und CNTF receptor subunits, gp130 and p-Stat3, are located in the perikaryon, in dendrites, in the axon as well as the growth cones and neuromuscular junctions of motoneurons. Immunofluorescent staining for the native forms (TrkB, gp130) is mainly found close to the membrane of the axon. In contrast, the activated forms (p-TrkB, p-Stat3) are mainly located inside the axon. GDNF receptor subunits Ret and p-Ret are highly expressed in the dendrites of motoneurons. In addition, Ret and p-Ret are also located in the perikaryon as well as the neuromuscular junction. Moreover, neurite outgrowth stimulated by neurotrophic factors was analyzed, differentiating axonal and dendritic growth. Primary motoneurons treated with GDNF grew dendrites which were twice as long as dendrites treated with BDNF or CNTF. Thus, GDNF is an important and potent stimulator of dendrite outgrowth in isolated primary motoneurons. This finding correlates well with the high expression of Ret and p-Ret in dendrites. On the other hand BDNF, CNTF and GDNF had equally potent effects on stimulating axonal growth. This thesis also characterized the interactions of neurotrophic factors with AMPA receptors regarding effects on neurite outgrowth. Interestingly, this interaction seems to be of greater importance for dendritic growth rather than axonal growth. The pmn mouse is a mouse model for neurodegenerative diseases of motoneurons, such as amyotrophic lateral sclerosis and spinal muscular atrophy. Pmn Motoneurons, which were cultured in presence of BDNF or GDNF, displayed the characteristic axonal growth deficiency as well as typical axonal swellings. The axon of these motoneurons reached only half the length of healthy control motoneurons. Surprisingly, treatment with CNTF rescued the pmn phenotype as the axons grew to the lengths of healthy control motoneurons. CNTF treatment also significantly reduced the number of pathological axonal swellings in vitro. Therefore CNTF seems to be the most promising therapeutic neurotrophic factor for treatment of neurodegenerative diseases of the motoneuron. KW - BDNF KW - CNTF KW - GDNF KW - Motoneuron KW - pmn KW - CNTF KW - BNDF KW - GDNF KW - Neuritenwachstum KW - neurotrophic KW - neurite KW - AMPA KW - axon KW - dendrite Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29473 ER - TY - THES A1 - Deng, Chunchu T1 - Dynamic remodeling of endoplasmic reticulum and ribosomes in axon terminals of wildtype and Spinal Muscular Atrophy motoneurons T1 - Dynamische Reorganization des endoplasmatischen Retikulums und der Ribosomen in Axonterminalen von Wildtyp- und Spinaler Muskelatrophie Motoneuronen N2 - In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA. N2 - Das Endoplasmatische Retikulum (ER) bildet ein dynamisches und kontinuierliches Netzwerk in Axonen von stark polarisierten Neuronen und spielt dabei eine wichtige Rolle in der Lipidsynthese, dem Ca2+ Homöostase und der Aufrechterhaltung von Synapsen. Allerding sind die Mechanismen, die der Regulierung der axonalen ER-Dynamik und seiner Funktion bei der dynamischen Regulierung der lokalen Translation zugrunde liegen, nicht vollständig aufgeklärt. Im Rahmen meiner Dissertation habe ich die schnellen dynamischen Bewegungen des ERs und Ribosomen in Wachstumskegeln von Wildtyp- und Smn-defizienten Motoneuronen als Reaktion auf einen kurzen Puls von Brain-derived neurotrophic factor (BDNF) untersucht. Daten der Bildgebung lebender Zellen zeigen, dass sich das ER in axonalen Filopodien des Wachstumskegels entlang von Aktin-Filamenten ausbreitet. Die Beeinträchtigung des Aktin-Zytoskeletts mittels Cytochalasin D Behandlung führt zu einer Einschränkung der dynamischen Bewegung des ERs in den axonalen Filopodien. Im Gegensatz zu den Filopodien scheinen die Bewegungen des ERs in Wachstumskegeln von einem koordinierten Zusammenspiel des Aktin- und Mikrotubuli- Zytoskeletts zu beruhen. Myosin VI ist insbesondere für die ER-Bewegungen in Filopodien erforderlich, während Drebrin A die Aktin/Mikrotubuli koordinierte ER-Dynamik vermittelt. Darüber hinaus zeigte sich, dass das BDNF/TrkB Signal die Bildung von 80S-Ribosomen in Wachstumskegeln in Sekundenschnelle auslöst. Aktivierte Ribosomen verlagern sich in das präsynaptische ER und vollziehen eine lokale Translation. Diese Ergebnisse beschreiben die dynamische Interaktion zwischen ER und Ribosomen während der lokalen Translation und zeigen eine neuartige potentielle Funktion des präsynaptischen ER bei der intra-axonalen Synthese von Transmembranproteinen wie die α-1β Untereinheit der N-Typ Ca2+ Kanäle in Motoneuronen auf. Darüber hinaus zeigen wir, dass in Smn-defizienten Motoneuronen die dynamischen ER-Bewegungen in axonalen Wachstumskegeln beeinträchtigt sind, was mit einer gestörten Polymerisation von Aktinfilamenten zusammenzuhängen scheint. Interessanterweise erfahren Ribosomen in Smn-defizienten Wachstumskegeln keine schnellen strukturellen Veränderungen und assoziieren nicht mit dem ER als Reaktion auf BDNF. Somit könnten eine abweichende ER-Dynamik und die Reaktion der Ribosomen auf extrazelluläre Reize das axonale Wachstum und die präsynaptische Funktion und Aufrechterhaltung beeinträchtigen und damit zur Pathologie von SMA beitragen. KW - Motoneuron KW - Endoplasmatisches Retikulum KW - Ribosom KW - Brain-derived neurotrophic factor KW - Spinale Muskelatrophie KW - ER dynamics in axon terminals KW - Dynamics of ribosome assembly KW - BDNF stimulation KW - Spinal Muscular Atrophy Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264954 ER - TY - THES A1 - Beck, Katherina T1 - Einfluss von RSK auf die Aktivität von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\) T1 - RSK2 alters ERK activity, axonal transport and synaptic function in motoneurons of \(Drosophila\) \(melanogaster\) N2 - In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist hauptsächlich in Regionen des Gehirns exprimiert, in denen Lernen und Gedächtnisbildung stattfinden. In Mäusen und Drosophila, die als Modellorganismen für CLS dienen, konnten auf makroskopischer Ebene keine Veränderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Gedächtnisbildung beobachtet. Die synaptische Plastizität und die einhergehenden Veränderungen in den Eigenschaften der Synapse sind fundamental für adaptives Verhalten. Zur Analyse der synaptischen Plastizität eignet sich das neuromuskuläre System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus Säugern, die wesentlich für die Bildung von LTP im Hippocampus sind. Zunächst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der präsynaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion ausüben könnte. Morphologische Untersuchungen der Struktur der neuromuskulären Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Größe der neuromuskulären Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskulären Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivität, nicht aber die Freisetzung der Neurotransmitter an der präsynaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizität glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der präsynaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Darüber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellkörpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und übernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellkörpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Darüber hinaus könnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizität beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgeklärt werden, ob der Einfluss von RSK auf die synaptische Plastizität durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskulären Synapse auf die Funktion von RSK als Negativregulator von ERK zurückzuführen ist. Die Größe der neuromuskulären Synapse sowie die Größe der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeinträchtigt ist. Die durchgeführten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK könnte an der Regulation des axonalen Transports von präsynaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, dafür verweilten mehr Mitochondrien in stationären Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeinträchtigt ist. N2 - In this thesis the function RSK in motoneurons of Drosophila has been analyzed. Mutations in the RSK2-gene cause the Coffin-Lowry-Syndrome (CLS) which is characterized by mental retardation. RSK2 is predominantly expressed in regions of the brain where learning and formation of the memory take place. Even no obvious changes in brain structures could be observed at macroscopic level in mouse and Drosophila which serve as an animal model for CLS. However deficits in various learning tasks could be observed due to the loss of the RSK function. Synaptic plasticity and the following changes in synaptic properties are fundamental for adaptive behaviors. The neuromuscular system of Drosophila suits as a model for studies of the synaptic plasticity because of the stereotypic innervation pattern and the use of ionotropic glutamate receptors which subunits are homologous to the subunits of the mammalian AMPA-type of glutamate receptors which are essential for the formation of LTP in the hippocampus. This study shows that RSK is located at the presynaptic site of the motoneurons of Drosophila which indicates a synapse-specific function of RSK. The structural analysis of the neuromuscular junction (NMJ) show that the loss of RSK causes a reduction in size of the NMJ, boutons, active zones and glutamate receptor fields. More boutons were found at the NMJ, but less active zones and glutamate receptor fields were established. The localization of RSK at the postsynaptic side could not be detected in this study although RSK regulates the synaptic transmission by affecting the postsynaptic sensitivity but not the presynaptic neurotransmitter release. Hence RSK could take part in the regulation of synaptic plasticity. Immunohistochemical analysis could depict a novel function of RSK in the synapse-specific localization of ERK. Further this study show that due to the loss of RSK more activated ERK is located in den cell bodies of the motoneurons. RSK functions as a negative regulator of the ERK/MAPK signaling in the somata of motoneurons. Additionally, RSK could regulate the distribution of ERK in the different subcompartments of the motoneurons. Previous studies show ERK as a regulator of synaptic plasticity by influencing the insertion of AMPA receptors into the postsynaptic membrane during LTP. RSK is activated by the ERK/MAPK signaling and functions not only as an effector kinase but also as a negative regulator of this pathway. If the effect of RSK on synaptic plasticity is due to its function as a negative regulator of ERK should be clarified in this work. Analysis of the genetic interactions of rsk and rolled, the Drosophila homologue of mammalian ERK, show that the reduced number of active zones and glutamate receptor fields found at the NMJ of RSK null mutants is caused by the function of RSK as a negative regulator of ERK. In turn RSK affects the size of the NMJ, also the size of the active zones and glutamate receptor fields by its function as an effector kinase of the ERK/MAPK signaling. Several studies have shown that the axonal transport of mitochondria is affected in many neuropathological diseases. This work could uncover a novel function of RSK in the regulation of the axonal transport in motoneurons. The loss of RSK causes the formation of agglomerates of the presynaptic proteins BRP and CSP. Therefore RSK takes part in the regulation of the transport of presynaptic material. In absence of RSK less mitochondria are transported in anterograde direction and more mitochondria are pausing. This results implicate a function of RSK in regulating the anterograde transport of mitochondria. KW - Taufliege KW - RSK KW - axonaler Transport KW - synaptische Funktion KW - ERK KW - Motoneuron KW - Motoneuron KW - Genmutation KW - Drosophila Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130717 ER - TY - THES A1 - Schweizer, Ulrich T1 - Genetische Untersuchungen zur Rolle von Cytochrom C und Stat3 bei der Regulation des embryonalen Zelltods von Motoneuronen der Maus T1 - Genetic studies on the role of Cytochrome C and Stat3 for the regulation of the cell death of embryonic mouse motoneurons N2 - Genetische Inaktivierung des somatischen Cytochrom C Gens der Maus Cytochrom C wurde als ein Interaktionspartner im Apoptosom beschrieben. Ziel dieses Projektes war es, die Rolle von Cytochrom C bei der Apoptose von Nervenzellen in vivo durch genetische Inaktivierung in der Maus zu untersuchen. Die homozygote Deletion des Cytochrom C Gens führt jedoch zu einem sehr frühen Entwicklungsdefekt: Schon am 8. Embryonaltag findet man nur noch Embryonen ohne erkennbare Körperachse. Im weiteren wurden daher heterozygote Tiere untersucht, die in bestimmten Geweben, wie Gehirn und Rückenmark, eine Reduktion der Menge von Cytochrom C aufweisen. Am ersten Tag nach der Geburt konnten keine Unterschiede zwischen Tieren mit einem oder zwei Cytochrom C Genen in Bezug die Anzahl von Motoneuronen gefunden werden. Auch nach perinataler Fazialisläsion war die Rate des Zelltods bei Tieren mit heterozygoter Deletion des Cytochrom C Gens unverändert. In vitro zeigte sich jedoch eine erhöhte Resitenz von Motoneuronen gegenüber Fas-induzierter Apoptose. Bei der Analyse der Apoptose von Thymozyten zeigte sich ein Trend, der eine kleine, aber reproduzierbare Verzögerung einer späten Zelltodphase nach UV-induzierter Apoptose nahelegt. Erste Experimente deuten außerdem auf einen Effekt der Cytochrom C Gendosis auf den Verlauf einer Experimentellen Autoimmunencephalitis (EAE) hin. Charakterisierung der NFL-Cre Maus Die zelltypspezifische Genablation mit dem Cre/loxP System umgeht einige der größten Probleme der klassischen Methode der Geninaktivierung in Mäusen, indem nur in bestimmten Geweben oder Zelltypen, eventuell sogar nur ab einem bestimmten Zeitpunkt, ein Gen gezielt ausgeschaltet werden kann. Allerdings hängt das Cre/loxP System von der Verfügbarkeit von brauchbaren Cre-transgenen Mauslinien mit entsprechenden Expressionsmustern und –kinetiken ab. Wir haben eine transgene Mauslinie etabliert und analysiert, die die Cre Rekombinase unter der Kontrolle des humanen Neurofilament-L Promotors exprimiert. Das Expressionsmuster von Cre wurde in mehreren Geweben mit RT-PCR und durch Verkreuzung mit einer Reportergenmaus untersucht. Im Gehirn wurden Cre exprimierende Zelltypen mit in-situ Hybridisierung, Immunhistochemie und wiederum mit Hilfe der Reportermaus identifiziert. Dabei zeigte sich eine spezifische Cre Expression in bestimmten Neuronpopulationen wie hippocampalen Pyramidenzellen und spinalen und cranialen Motoneuronen. Unsere NFL-Cre Maus besitzt einige Eigenschaften, die bisher publizierte Cre-Linien nicht aufweisen, so z.B.eine starke Cre Expression in hippocampalen Pyramidenzellen, aber nicht in Körnerzellen des Gyrus dentatus; Expression in cortikalen Pyramidenzellen, aber keine Expression im Striatum; Expression in zerebellären Purkinje-, aber nicht Körnerzellen; sowie die Expression in spinalen und cranialen Motoneuronen, aber nicht in angrenzenden Interneuronen. Die Rolle von Stat3 für das Überleben von Motoneuronen Die Mitglieder der CNTF/LIF/Cardiotrophin Genfamilie sind potente Überlebensfaktoren für embryonale und lädierte Motoneurone sowohl in vitro als auch in vivo. Diese Faktoren binden an Rezeptorkomplexe, die gp130 und LIFR als signaltransduzierende Komponenten enthalten. Im Gegensatz zu den Rezeptoren für andere neurotrophe Faktoren, führt die Aktivierung von gp130 und LIFR zur Phosphorylierung und Aktivierung des Transkriptionsfaktors Stat3. Es war aber zu Beginn dieser Arbeiten unklar, ob die Aktivierung von Stat3 für den Überlebenseffekt der neuropoietischen Zytokine notwendig ist. Um diese Frage zu beantworten, wurde Stat3 in Motoneuronen mit Hilfe des Cre/loxP Systems konditional inaktiviert. Stat3 ist nicht für das Überleben embryonaler Motoneurone essentiell, obwohl man in vitro eine Verschiebung der Dosis-Wirkungskurve für CNTF findet. In vivo hingegen kann kein erhöhter Zelltod von Motoneuronen nachgewiesen werden. Im Gegensatz dazu, kommt es bei adulten Tieren mit Inaktivierung von Stat3 in Motoneuronen zu einem erhöhten Zelltod nach Fazialisläsion. Diese Neurone können wiederum durch die Applikation neurotropher Faktoren, einschließlich CNTF, gerettet werden. Durch semiquantitative RT-PCR kann man zeigen, daß Stat3-regulierte Gene, deren Expression nach Nervenläsion induziert wird, in Neuronen mit Inaktivierung von Stat3 weniger stark exprimiert werden. Zu diesen Genen gehören Reg-2, ein Mitogen für Schwannzellen, das von regenerierenden Neuronen exprimiert wird, und Bcl-xL, ein Gen, welches direkt in die Apoptoseregulation eingreift. Diese Daten zeigen, daß Stat3 Aktivierung eine essentielle Rolle für das Überleben nach Läsion von postnatalen Motoneuronen spielt, aber nicht während der Embryonalentwicklung. Das bedeutet, daß die Signalwege ein und desselben neurotrophen Faktors sich während der Entwicklung und reifung des Organismus verändern können. N2 - Genetic inactivation of the somatic cytochrome C gene in mice Cytochrome C has been described as a component of the apoptosome. It was the aim of this project to analyze the role of cytochrome C in apoptosis of neurons in vivo by genetic inactivation in mice. Mice lacking cytochrome C, however, exhibit a very early embryonic phenotype: On embryonic day 8, only highly degenerated embryos can be found which even lack a body axis. Therefore, we subsequently analyzed heterozygous animals, as they showed a gene dose-dependent reduction of cytochrome C protein in several tissues, including brain and spinal cord. Testing motoneuron survival after development or after facial nerve lesion, we found no significant differences between heterozygous animals and their wildtype litter mates. In vitro, however, an increased resistance toward Fas-mediated apoptosis was observed in heterozygous motoneurons. When we analyzed induced apoptosis of thymozytes, we consistently found that a late phase of cell death was delayed in cytochrome C heterozygous cells. Characterization of the Cre-transgenic NFL-Cre mouse Cell type-specific gene ablation using the Cre/loxP technology can circumvent some of the greatest problems encountered with classical gene inactivation by selective inactivation of the gene of interest in a particular tissue or cell type, possibly at a specific time point. However, the Cre/loxP technology critically depends on the availability of suitable Cre-transgenic mouse lines. We have established and characterized a transgenic mouse line that expresses Cre recombinase under control of the human neurofilament-L promoter. Cre expression was studied by RT-PCR and cross-breeding with lacZ reporter mice. Our NFL-Cre mice exhibit some unique features not shared with other available Cre transgenic mouse lines: We find high Cre expression in hippocampal pyramidal neurons while granule cells in the dentate gyrus do not express Cre. In addition, we observed widespread Cre expression in cortical neurons, but none in striatal neurons. Finally, Cre is expressed in cranial and spinal motoneurons, but not in adjacent interneurons. The role of Stat3 for the survival of motoneurons Members of the CNTF/LIF/Cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons in vitro as well as in vivo. These factors act through receptor comlexes containing gp130 and LIFR signal transducing subunits. A particular feature of these receptors is that their activation leads to phosphorylation and activation of the transcription factor Stat3, while neurotrophin receptors do not activate Stat3. It was the aim of this project to find out whether Stat3 activation in response to CNTF binding is required for its survival effect on motoneurons. Therefore, we conditionally inactivated Stat3 in motoneurons using our NFL-Cre transgenic mice. In NFL-Cre; Stat3flox/KO mice, we find that Stat3 is not essential for motoneuron survival during the the period of naturally occurring cell death, although motoneurons from these mice require higher doses of CNTF for their survival in vitro. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in adult NFL-Cre; Stat3flox/KO mice. Stat3 proved essential for upregulation of Reg-2 and Bcl-xL expression in lesioned motoneurons. These data show that Stat3 activation plays an important role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation. KW - Cytochrom c KW - Apoptosis KW - Nervenzelle KW - Cytochrom C KW - Stat3 KW - Motoneuron KW - Fazialisläsion KW - LIFR KW - Cytochrome C KW - Stat3 KW - motoneuron KW - facial nerve lesion KW - LIFR Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3732 ER -