TY - JOUR A1 - Landmann, Johannes A1 - Hennig, Philipp T. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik T1 - Borylation of fluorinated arenes using the boron centred nucleophile B(CN)\(_{3}\)\(^{2-}\) - a unique entry to aryltricyanoborates JF - Chemical Science N2 - The potassium salt of the boron-centred nucleophile B(CN)\(_{3}\)\(^{2-}\)(1) readily reacts with perfluorinated arenes, such as hexafluorobenzene, decafluorobiphenyl, octafluoronaphthalene and pentafluoropyridine, which results in KF and the K\(^{+}\) salts of the respective borate anions with one {B(CN)\(_{3}\)} unit bonded to the (hetero)arene. An excess of K\(_{2}\)1 leads to the successive reaction of two or, in the case of perfluoropyridine, even three C–F moieties and the formation of di- and trianions, respectively. Moreover, all of the 11 partially fluorinated benzene derivatives, C\(_{6}\)F\(_{6-n}\)H\(_{n}\) (n = 1–5), generally react with K\(_{2}\)1 to give new tricyano(phenyl)borate anions with high chemo- and regioselectivity. A decreasing number of fluorine substituents on benzene results in a decrease in the reaction rate. In the cases of partially fluorinated benzenes, the addition of LiCl is advantageous or even necessary to facilitate the reaction. Also, pentafluorobenzenes R–C\(_{6}\)F\(_{5}\) (R = –CN, –OMe, –Me, or –CF\(_{3}\)) react via C–F/C–B exchange that mostly occurs in the para position and to a lesser extent in the meta or ortho positions. Most of the reactions proceed via an S\(_{N}\)Ar mechanism. The reaction of 1,4-F\(_{2}\)C\(_{6}\)H\(_{4}\) with K\(_{2}\)1 shows that an aryne mechanism has to be considered in some cases as well. In summary, a wealth of new stable tricyano(aryl)borates have been synthesised and fully characterized using multi-NMR spectroscopy and most of them were characterised using single-crystal X-ray diffraction. KW - borylation KW - boron-centred nucleophile KW - aryltricyanoborates Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170417 VL - 8 IS - 9 ER - TY - INPR A1 - Wang, Sunewang R. A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Dewhurst, Rian D. A1 - Kelch, Hauke A1 - Krummenacher, Ivo A1 - Mattock, James D. A1 - Müssig, Jonas H. A1 - Thiess, Torsten A1 - Vargas, Alfredo A1 - Zhang, Jiji T1 - Engineering a Small HOMO-LUMO Gap and Intramolecular B–B Hydroarylation by Diborene/Anthracene Orbital Intercalation T2 - Angewandte Chemie, International Edition N2 - The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9. KW - boron KW - small HOMO-LUMO gap KW - diborenes KW - borylation KW - hydroarylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148126 N1 - This is the pre-peer reviewed version of the following article: S. R. Wang, M. Arrowsmith, J. Böhnke, H. Braunschweig, T. Dellermann, R. D. Dewhurst, H. Kelch, I. Krummenacher, J. D. Mattock, J. H. Müssig, T. Thiess, A. Vargas, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8009., which has been published in final form at DOI: 10.1002/anie.201704063. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 56 IS - 27 ER - TY - INPR A1 - Braunschweig, Holger A1 - Brückner, Tobias A1 - Deißenberger, Andrea A1 - Dewhurst, Rian A1 - Gackstatter, Annika A1 - Gärtner, Annalena A1 - Hofmann, Alexander A1 - Kupfer, Thomas A1 - Prieschl, Dominic A1 - Thiess, Torsten A1 - Wang, Sunewang Rixin T1 - Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes T2 - Chemistry, A European Journal N2 - Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B–X (X = halogen) bonds and a C–H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B–X insertion, may be crucial for the C–H borylation that leads to the final products. Notably, our results demonstrate the first C–H borylation with a strong B–F bond activated by silylene insertion. KW - diborane KW - boron KW - silylenes KW - CH activation KW - bond activation KW - diboraindanes KW - diboranes KW - synthetic methods KW - borylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153068 N1 - This is the pre-peer reviewed version of the following article: H. Braunschweig, T. Brückner, A. Deißenberger, R. D. Dewhurst, A. Gackstatter, A. Gärtner, A. Hofmann, T. Kupfer, D. Prieschl, T. Thiess, S. R. Wang, Reaction of Dihalodiboranes(4) with a N-Heterocyclic Silylene: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes, Chem. Eur. J. 2017, 23, 9491., which has been published in final form at dx.doi.org/10.1002/chem.201702377. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving ER -