TY - JOUR A1 - Odorfer, Thorsten M. A1 - Yabe, Marie A1 - Hiew, Shawn A1 - Volkmann, Jens A1 - Zeller, Daniel T1 - Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm JF - Scientific Reports N2 - Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia. KW - neurology KW - neuroscience Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357713 VL - 13 ER - TY - JOUR A1 - Rauschenberger, Vera A1 - von Wardenburg, Niels A1 - Schaefer, Natascha A1 - Ogino, Kazutoyo A1 - Hirata, Hiromi A1 - Lillesaar, Christina A1 - Kluck, Christoph J. A1 - Meinck, Hans‐Michael A1 - Borrmann, Marc A1 - Weishaupt, Andreas A1 - Doppler, Kathrin A1 - Wickel, Jonathan A1 - Geis, Christian A1 - Sommer, Claudia A1 - Villmann, Carmen T1 - Glycine Receptor Autoantibodies Impair Receptor Function and Induce Motor Dysfunction JF - Annals of Neurology N2 - Objective Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff‐person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding. Although functional impairment of glycine receptors following autoantibody binding has recently been investigated, it is still incompletely understood. Methods A cell‐based assay was used for positive sample evaluation. Glycine receptor function was assessed by electrophysiological recordings and radioligand binding assays. The in vivo passive transfer of patient autoantibodies was done using the zebrafish animal model. Results Glycine receptor function as assessed by glycine dose–response curves showed significantly decreased glycine potency in the presence of patient sera. Upon binding of autoantibodies from 2 patients, a decreased fraction of desensitized receptors was observed, whereas closing of the ion channel remained fast. The glycine receptor N‐terminal residues \(^{29}\)A to \(^{62}\)G were mapped as a common epitope of glycine receptor autoantibodies. An in vivo transfer into the zebrafish animal model generated a phenotype with disturbed escape behavior accompanied by a reduced number of glycine receptor clusters in the spinal cord of affected animals. Interpretation Autoantibodies against the extracellular domain mediate alterations of glycine receptor physiology. Moreover, our in vivo data demonstrate that the autoantibodies are a direct cause of the disease, because the transfer of human glycine receptor autoantibodies to zebrafish larvae generated impaired escape behavior in the animal model compatible with abnormal startle response in stiff‐person syndrome or progressive encephalitis with rigidity and myoclonus patients. KW - glycine receptor autoantibodies KW - behavioral disorders KW - neurology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216005 VL - 88 IS - 3 SP - 544 EP - 561 ER - TY - JOUR A1 - Kollikowski, Alexander M. A1 - Schuhmann, Michael K. A1 - Nieswandt, Bernhard A1 - Müllges, Wolfgang A1 - Stoll, Guido A1 - Pham, Mirko T1 - Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke JF - Annals of Neurology N2 - Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T‐cell chemoattractant CXCL‐11. Finally, we found evidence that short‐term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466–479 KW - neurology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212168 VL - 87 IS - 3 ER - TY - JOUR A1 - Stengel, Helena A1 - Vural, Atay A1 - Brunder, Anna-Michelle A1 - Heinius, Annika A1 - Appeltshauser, Luise A1 - Fiebig, Bianca A1 - Giese, Florian A1 - Dresel, Christian A1 - Papagianni, Aikaterini A1 - Birklein, Frank A1 - Weis, Joachim A1 - Huchtemann, Tessa A1 - Schmidt, Christian A1 - Körtvelyessy, Peter A1 - Villmann, Carmen A1 - Meinl, Edgar A1 - Sommer, Claudia A1 - Leypoldt, Frank A1 - Doppler, Kathrin T1 - Anti–pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy JF - Neurology: Neuroimmunology & Neuroinflammation N2 - Objective To identify and characterize patients with autoantibodies against different neurofascin (NF) isoforms. Methods Screening of a large cohort of patient sera for anti-NF autoantibodies by ELISA and further characterization by cell-based assays, epitope mapping, and complement binding assays. Results Two different clinical phenotypes became apparent in this study: The well-known clinical picture of subacute-onset severe sensorimotor neuropathy with tremor that is known to be associated with IgG4 autoantibodies against the paranodal isoform NF-155 was found in 2 patients. The second phenotype with a dramatic course of disease with tetraplegia and almost locked-in syndrome was associated with IgG3 autoantibodies against nodal and paranodal isoforms of NF in 3 patients. The epitope against which these autoantibodies were directed in this second phenotype was the common Ig domain found in all 3 NF isoforms. In contrast, anti–NF-155 IgG4 were directed against the NF-155–specific Fn3Fn4 domain. The description of a second phenotype of anti–NF-associated neuropathy is in line with some case reports of similar patients that were published in the last year. Conclusions Our results indicate that anti–pan-NF-associated neuropathy differs from anti–NF-155-associated neuropathy, and epitope and subclass play a major role in the pathogenesis and severity of anti–NF-associated neuropathy and should be determined to correctly classify patients, also in respect to possible differences in therapeutic response. KW - neurology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202462 VL - 6 IS - 5 ER - TY - JOUR A1 - Karl, Franziska A1 - Wußmann, Maximiliane A1 - Kreß, Luisa A1 - Malzacher, Tobias A1 - Fey, Phillip A1 - Groeber‐Becker, Florian A1 - Üçeyler, Nurcan T1 - Patient‐derived in vitro skin models for investigation of small fiber pathology JF - Annals of Clinical and Translational Neurology N2 - Objective To establish individually expandable primary fibroblast and keratinocyte cultures from 3‐mm skin punch biopsies for patient‐derived in vitro skin models to investigate of small fiber pathology. Methods We obtained 6‐mm skin punch biopsies from the calf of two patients with small fiber neuropathy (SFN) and two healthy controls. One half (3 mm) was used for diagnostic intraepidermal nerve fiber density (IENFD). From the second half, we isolated and cultured fibroblasts and keratinocytes. Cells were used to generate patient‐derived full‐thickness three‐dimensional (3D) skin models containing a dermal and epidermal component. Cells and skin models were characterized morphologically, immunocyto‐ and ‐histochemically (vimentin, cytokeratin (CK)‐10, CK 14, ki67, collagen1, and procollagen), and by electrical impedance. Results Distal IENFD was reduced in the SFN patients (2 fibers/mm each), while IENFD was normal in the controls (8 fibers/mm, 7 fibers/mm). Two‐dimensional (2D) cultured skin cells showed normal morphology, adequate viability, and proliferation, and expressed cell‐specific markers without relevant difference between SFN patient and healthy control. Using 2D cultured fibroblasts and keratinocytes, we obtained subject‐derived 3D skin models. Morphology of the 3D model was analogous to the respective skin biopsy specimens. Both, the dermal and the epidermal layer carried cell‐specific markers and showed a homogenous expression of extracellular matrix proteins. Interpretation Our protocol allows the generation of disease‐specific 2D and 3D skin models, which can be used to investigate the cross‐talk between skin cells and sensory neurons in small fiber pathology. KW - neurology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201649 VL - 6 IS - 9 ER - TY - JOUR A1 - Bittner, Stefan A1 - Bobak, Nicole A1 - Feuchtenberger, Martin A1 - Herrmann, Alexander M A1 - Göbel, Kerstin A1 - Kinne, Raimund W A1 - Hansen, Anker J A1 - Budde, Thomas A1 - Kleinschnitz, Christoph A1 - Frey, Oliver A1 - Tony, Hans-Peter A1 - Wiendl, Heinz A1 - Meuth, Sven G T1 - Expression of K\(_2\)\(_P\)5.1 potassium channels on CD4\(^+\)T lymphocytes correlates with disease activity in rheumatoid arthritis patients JF - Arthritis Research & Therapy N2 - Introduction CD4+ T cells express K2P5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K2P5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K2P5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Methods Expression levels of K2P5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K2P5.1. Results K2P5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K2P5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K2P5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Conclusions Disease activity in RA patients correlates strongly with K2P5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K2P5.1 as a potential biomarker for disease activity and differential diagnosis. KW - neurology Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139334 VL - 13 IS - R21 ER - TY - JOUR A1 - Ehling, Petra A1 - Göb, Eva A1 - Bittner, Stefan A1 - Budde, Thomas A1 - Ludwig, Andreas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? JF - Experimental & Translational Stroke Medicine N2 - Background Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts. Methods In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays. Results After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups. Conclusions Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model. KW - neurology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129240 VL - 5 IS - 16 ER -