TY - JOUR A1 - Xu, Jietao A1 - Fahmy-Garcia, Shorouk A1 - Wesdorp, Marinus A. A1 - Kops, Nicole A1 - Forte, Lucia A1 - De Luca, Claudio A1 - Misciagna, Massimiliano Maraglino A1 - Dolcini, Laura A1 - Filardo, Giuseppe A1 - Labberté, Margot A1 - Vancíková, Karin A1 - Kok, Joeri A1 - van Rietbergen, Bert A1 - Nickel, Joachim A1 - Farrell, Eric A1 - Brama, Pieter A. J. A1 - van Osch, Gerjo J. V. M. T1 - Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: in vitro, ex vivo and in vivo evaluation JF - Journal of Functional Biomaterials N2 - Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects. KW - tissue engineering KW - regenerative medicine KW - osteochondral lesion KW - biocompatible materials KW - bone morphogenetic proteins KW - platelet-derived growth factor KW - animal model KW - weight-bearing Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304019 SN - 2079-4983 VL - 14 IS - 2 ER - TY - JOUR A1 - Waxman, Susannah A1 - Strzalkowska, Alicja A1 - Wang, Chao A1 - Loewen, Ralitsa A1 - Dang, Yalong A1 - Loewen, Nils A. T1 - Tissue-engineered anterior segment eye cultures demonstrate hallmarks of conventional organ culture JF - Graefe’s Archive for Clinical and Experimental Ophthalmology N2 - Background Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function. Methods Porcine eyes were decellularized with freeze–thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology. Results Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead. Conclusion Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes. KW - ocular anterior segment perfusion culture KW - tissue engineering KW - aqueous humor outflow KW - trabecular meshwork Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323845 VL - 261 IS - 5 ER - TY - JOUR A1 - Bothe, Friederike A1 - Deubel, Anne-Kathrin A1 - Hesse, Eliane A1 - Lotz, Benedict A1 - Groll, Jürgen A1 - Werner, Carsten A1 - Richter, Wiltrud A1 - Hagmann, Sebastien T1 - Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs JF - International Journal of Molecular Sciences N2 - Despite advances in cartilage repair strategies, treatment of focal chondral lesions remains an important challenge to prevent osteoarthritis. Articular cartilage is organized into several layers and lack of zonal organization of current grafts is held responsible for insufficient biomechanical and biochemical quality of repair-tissue. The aim was to develop a zonal approach for cartilage regeneration to determine whether the outcome can be improved compared to a non-zonal strategy. Hydrogel-filled polycaprolactone (PCL)-constructs with a chondrocyte-seeded upper-layer deemed to induce hyaline cartilage and a mesenchymal stromal cell (MSC)-containing bottom-layer deemed to induce calcified cartilage were compared to chondrocyte-based non-zonal grafts in a minipig model. Grafts showed comparable hardness at implantation and did not cause visible signs of inflammation. After 6 months, X-ray microtomography (µCT)-analysis revealed significant bone-loss in both treatment groups compared to empty controls. PCL-enforcement and some hydrogel-remnants were retained in all defects, but most implants were pressed into the subchondral bone. Despite important heterogeneities, both treatments reached a significantly lower modified O’Driscoll-score compared to empty controls. Thus, PCL may have induced bone-erosion during joint loading and misplacement of grafts in vivo precluding adequate permanent orientation of zones compared to surrounding native cartilage. KW - cartilage repair KW - osteochondral defect KW - tissue engineering KW - starPEG hydrogel KW - chondrocyte KW - MSC KW - zonal construct KW - minipig Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285118 SN - 1422-0067 VL - 20 IS - 3 ER - TY - JOUR A1 - Al-Hejailan, Reem A1 - Weigel, Tobias A1 - Schürlein, Sebastian A1 - Berger, Constantin A1 - Al-Mohanna, Futwan A1 - Hansmann, Jan T1 - Decellularization of full heart — optimizing the classical sodium-dodecyl-sulfate-based decellularization protocol JF - Bioengineering N2 - Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds. KW - tissue engineering KW - decellularization KW - vascularized scaffold KW - cardiac patch KW - dynamic culture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270781 SN - 2306-5354 VL - 9 IS - 4 ER - TY - THES A1 - Berger, Constantin T1 - Influence of the pancreatic extracellular matrix on pancreatic differentiation of human induced pluripotent stem cells and establishment of 3D organ models T1 - Einfluss der Extrazellulärmatrix des Pankreas auf die pankreatische Differenzierung humaner induziert pluripotenter Stammzellen und Etablierung von 3D Organmodellen N2 - Der Diabetes mellitus bezeichnet eine bislang unheilbare, metabolische Erkrankung, die mit schwerwiegenden Folgeerkrankungen einhergeht. Unter den potentiellen Strategien zur Heilung von Diabetes mellitus stellt die in vitro Generierung adulter β-Zellen des endokrinen Pankreas aus humanen induziert pluripotenten Stammzellen (hiPS) einen vielversprechenden Ansatz dar. Zwar ermöglichen bisherige Protokolle die Herstellung von Zellen mit einem β-Zell-ähnlichen Charakter, jedoch zeigen diese eine zunächst eingeschränkte Funktion, die sich erst im Verlauf einer vollständigen, durch Transplantation induzierten, Reifung der Zellen, normalisiert. Vorangegangene Studien zeigen, dass sich die Extrazellularmatrix (EZM) von Geweben positiv auf das Überleben und die Funktion adulter, isolierter Langerhans-Inseln des Pankreas auswirkt. Vor diesem Hintergrund stellt sich die Frage, ob Einflüsse der organspezifischen EZM die finale Reifung in vitro hergestellter β-Zellen herbeiführen können. Um diese Hypothese zu testen, wurde im Rahmen der vorliegenden Studie die Wirkung der pankreatischen EZM auf die in vitro Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht sowie die Eignung der pankreatischen EZM zur Etablierung eines Organmodells des endokrinen Pankreas erprobt. Hierzu wurde zunächst eine pankreasspezifische EZM-Trägerstruktur (PanMa) durch Dezellularisierung von Pankreaten des Schweins mittels Natriumdesoxycholat hergestellt. Die generierte PanMa wurde anhand (immun-) histologischer Färbungen, Rasterelektronen-mikroskopie, Feststellung des DNA-Gehalts sowie durch Versuche zur Perfusion und Wiederbesiedelung mit Endothelzellen eingehend charakterisiert. Zudem wurde auf Basis der ermittelten Daten ein Bewertungssystem (PancScore) zur standardisierten Herstellung der PanMa entwickelt. Als Nächstes wurde untersucht, ob die PanMa über gewebespezifische EZM-Merkmale verfügt. Zu diesem Zweck wurden biophysikalische und strukturelle Eigenschaften wie Festigkeit, Porosität und Hygroskopie mittels rheologischer Messungen sowie Versuchen zur Teilchendiffusion und zum Wasserbindungsverhalten bestimmt und mit azellulären EZMs des Dünndarms (SISser) und der Lunge (LungMa) verglichen. Nach der eingehenden Analyse der PanMa wurde deren Effekt auf die Eigenschaften von Stammzellen sowie auf frühe Stadien der Stammzellentwicklung untersucht. Hierzu wurde die PanMa als Trägerstruktur während der Erhaltung sowie der spontanen Differenzierung von hiPS verwendet und der Einfluss der PanMa anhand von Genexpressionsanalysen und immunhistochemischer Färbungen analysiert. In einem nächsten Schritt wurde die Wirkung der PanMa auf die Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht. Hierfür wurde die PanMa zum einen in flüssiger Form als Mediumzusatz sowie als solide Trägerstruktur während der Differenzierung von hiPS zu hormonexprimierenden Zellen (Rezania et al. 2012; Rezania et al. 2014) oder maturierenden β-Zellen verwendet (Rezania et al. 2014). Der Effekt der PanMa wurde anhand von Genexpressions-analysen, immunhistochemischer Färbungen und Analysen zur Glukose-abhängigen Insulinsekretion untersucht. In einem letzten Teil der Studie wurde die Eignung der PanMa zur verlängerten Kultivierung von hiPS-abgeleiteten endokrinen Zellen des Pankreas im Hinblick auf die Etablierung eines Organmodells des endokrinen Pankreas getestet. Hierzu wurde die PanMa zu einem Hydrogel weiterverarbeitet, welches zur Einkapselung und Kultivierung von hiPS-abgeleiteten hormonexprimierenden Zellen eingesetzt wurde. Um die Auswirkungen der Hydrogel-Kultur nachzuvollziehen, wurden die kultivierten Zellen mittels Genexpression, immun-histochemischer Färbungen und Analysen zur Glukose-abhängigen Insulinsekretion untersucht. Mittels Dezellularisierung porziner Pankreaten konnte eine zellfreie, pankreasspezifische EZM-Trägerstruktur mit geringen Restbeständen an DNA sowie einer weitgehend erhaltenen Mikro- und Ultrastruktur mit typischen EZM-Komponenten wie Kollagen I, III und IV hergestellt werden. Im Rahmen der Besiedelung arterieller Gefäße mit humanen Endothelzellen wurde die Zellkompatibilität der hergestellten PanMa sowie eine weitgehende Unversehrtheit der Gefäßstrukturen nachgewiesen. Verglichen zu SISser und LungMa zeichnete sich die PanMa als eine relativ weiche, stark wasserbindende, faserbasierte Struktur aus. Weiterhin konnten Hinweise für einen Effekt der PanMa auf den Stammzellcharakter und die frühe Entwicklung von hiPS beobachtet werden. Hierbei führte die Erhaltung von hiPS auf der PanMa zu einer leicht veränderten Expression von Genen des Kernpluripotenznetzwerks sowie zu einem reduziertem NANOG-Proteinsignal. Einhergehend mit diesen Beobachtungen zeigten hiPS während spontaner Differenzierung auf der PanMa eine verstärkte endodermale Entwicklung. Im Verlauf der pankreatischen Differenzierung führte die Kultivierung auf der PanMa zu einer signifikant verringerten Expression von Glukagon und Somatostatin, während die Expression von Insulin unverändert blieb, was auf eine Verminderung endokriner α- und δ-Zellen hinweist. Diese Veränderung äußerte sich jedoch nicht in einer verbesserten Glukose-abhängigen Insulinsekretion der generierten hormonexprimierenden Zellen. Unter Anwendung der PanMa als Hydrogel konnten hormonexprimierenden Zellen über einen verlängerten Zeitraum kultiviert werden. Nach 21 Tagen in Kultur zeigten die eingekapselten hormonexprimierenden Zellen eine unverändert hohe Viabilität, wiesen allerdings bereits eine erste veränderte Zellanordnung sowie eine leicht verminderte Glukose-abhängige Insulinsekretion auf. Zusammengefasst konnte in dieser Studie ein biologischer Effekt gewebespezifischer EZM-Merkmale auf die Differenzierung von hiPS nachgewiesen werden. Darüber hinaus weisen die Daten auf eine relevante Funktion der EZM im Rahmen der endokrinen Spezifizierung von hiPS während der pankreatischen Differenzierung hin. Diese Beobachtungen verdeutlichen die eminente Rolle der EZM in der Herstellung von funktionalen hiPS-abgeleiteten Zellen und plädieren für eine stärkere Einbindung organspezifischer EZMs im Bereich des Tissue Engineering und der klinischen Translation in der Regenerativen Medizin. N2 - Diabetes mellitus is an incurable, metabolic disease, which is associated with severe long-term complications. The in vitro generation of pancreatic β-cells from human induced pluripotent stem cells (hiPSCs) represent a promising strategy for a curative therapy of diabetes mellitus. However, current differentiation strategies largely fail to produce functional β-cells in vitro and require an additional in vivo transplantation to achieve terminal maturation. Previous studies demonstrated a beneficial effect of the extracellular matrix (ECM) on the survival and sustained function of adult, isolated islets of Langerhans. This raises the question whether organ-specific cell-ECM interactions might represent the missing link driving the final stage of β-cell development. In order to address this issue, this study investigated the impact of the pancreas ECM on in vitro β-cell differentiation and its use for the establishment of a pancreatic endocrine organ model. To this purpose, a pancreas-specific ECM scaffolds (PanMa) was derived from porcine pancreata using whole organ decellularization with Sodium Deoxycholate. In a first step, the generated PanMa was thoroughly characterized using (immuno-) histological stainings, scanning electron microscopy and DNA quantification as well as perfusion and recellularization experiments with endothelial cells. Based on these data, a scoring system (PancScore) for a standardized PanMa generation was developed. Next, the generated PanMa was tested for the presence of tissue-specific ECM features. Therefore, the biophysical and physico-structural characteristics, such as rigidity, porosity and hygroscopy were analyzed using rheological measurements, particle diffusion analyses as well as a water evaporation assay and compared to the properties of ECM scaffolds derived from porcine small intestine (SISser) and lung (LungMa) to examine organ-specific scaffold cues. Following the thorough scaffold characterization, the impact of the PanMa on pluripotency and early development of hiPSC was studied. To this purpose, gene and protein expression of hiPSCs during maintenance culture and spontaneous differentiation on the PanMa were assessed. In a next step, the impact of the PanMa on the pancreatic endocrine differentiation of hiPSCs was tested. Therefore, the PanMa was used as a liquid media supplement or as a solid scaffold during the directed differentiation of hiPSC towards either pancreatic hormone-expressing cells (Rezania et al. 2012; Rezania et al. 2014) or maturing β-cells (Rezania et al. 2014). The impact of the PanMa on the generated cells was examined by gene expression analysis, immunohistochemical staining of important stage markers, as well as glucose stimulated insulin secretion assays. In a last part of this study, the potential of the PanMa for the prolonged culture of hiPSC derived endocrine cells for the establishment of an in vitro organ model of the endocrine pancreas was examined. Therefore, a PanMa-derived hydrogel was generated and used for the encapsulation and culture of hiPSC-derived hormone-expressing cells (HECs). The influence of the PanMa-hydrogel culture was analyzed on gene, protein and functional level by gene expression analysis, immunohistochemical stainings and glucose stimulated insulin secretion. Whole organ decellularization resulted in the generation of an acellular PanMa scaffold, with low amounts of residual DNA and a preserved ECM micro- and ultrastructure, including important ECM components, such as collagen I, III and IV. Furthermore, the PanMa maintained an intact vessel system and was verified as cytocompatible as demonstrated by the successful recellularization of the arterial system with human endothelial cells. In comparison to SISser and LungMa, the PanMa was characterized as a relative soft, hygroscopic scaffold with a collagen-fiber based structure. Furthermore, the findings indicate that the ECM-specific properties have a relevant effect on the stem cell character and early multi-lineage decisions of hiPSCs. In this regard, maintenance of hiPSCs on the PanMa resulted in a slightly changed expression of pluripotency genes (OCT4, SOX2 and NANOG) and a weak immunohistochemical signal for NANOG protein, indicating a PanMa-dependent impact on hiPSC pluripotency. Strikingly, this presumption was corroborated by the finding that culture on the PanMa promoted an endodermal development of hiPSCs during spontaneous differentiation. In line with that, pancreatic differentiation of hiPSC on both the PanMa and SISser resulted in a significant decrease of glucagon and somatostatin gene expression as well as an unaltered insulin expression, suggesting an ECM-driven suppression of the development of non β-cell endocrine cells. However, this change did not result in an improved glucose stimulated insulin secretion of the generated HECs. Moreover, use of the PanMa as a hydrogel allowed prolonged culture of these cells in a defined culture system. HECs were viable after 21 days of culture, however already showed an altered islet morphology as well as a slightly decreased glucose stimulated insulin secretion. Altogether, this study demonstrates a relevant biological effect of tissue specific ECM cues on the in vitro differentiation of hiPSCs. More specifically, the data indicate an involvement of the ECM in the endocrine commitment of hiPSC-derived pancreatic cells during directed differentiation highlighting the ECM as an important regulator of pancreatic development. Collectively, these findings emphasize the relevance of the ECM for the fabrication of functional hiPSC-derived cell types and suggest a much stronger consideration of organ specific ECM cues for tissue engineering approaches as well as clinical translation in regenerative medicine. KW - Bauchspeicheldrüse KW - Induzierte pluripotente Stammzelle KW - Bindegewebe KW - Regenerative Medizin KW - Zelldifferenzierung KW - Extrazellulärmatrix KW - pancreas KW - Pankreas KW - Induced pluripotent stem cells KW - extracellular matrix KW - pancreatic differentiation KW - beta cell KW - tissue engineering KW - regenerative medicine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241268 ER - TY - JOUR A1 - Wagenbrenner, Mike A1 - Poker, Konrad A1 - Heinz, Tizian A1 - Herrmann, Marietta A1 - Horas, Konstantin A1 - Ebert, Regina A1 - Mayer-Wagner, Susanne A1 - Holzapfel, Boris M. A1 - Rudert, Maximilian A1 - Steinert, Andre F. A1 - Weißenberger, Manuel T1 - Mesenchymal stromal cells (MSCs) isolated from various tissues of the human arthritic knee joint possess similar multipotent differentiation potential JF - Applied Sciences N2 - (1) Background: The mesenchymal stromal cells (MSCs) of different tissue origins are applied in cell-based chondrogenic regeneration. However, there is a lack of comparability determining the most suitable cell source for the tissue engineering (TE) of cartilage. The purpose of this study was to compare the in vitro chondrogenic potential of MSC-like cells from different tissue sources (bone marrow, meniscus, anterior cruciate ligament, synovial membrane, and the infrapatellar fat pad removed during total knee arthroplasty (TKA)) and define which cell source is best suited for cartilage regeneration. (2) Methods: MSC-like cells were isolated from five donors and expanded using adherent monolayer cultures. Differentiation was induced by culture media containing specific growth factors. Transforming growth factor (TGF)-ß1 was used as the growth factor for chondrogenic differentiation. Osteogenesis and adipogenesis were induced in monolayer cultures for 27 days, while pellet cell cultures were used for chondrogenesis for 21 days. Control cultures were maintained under the same conditions. After, the differentiation period samples were analyzed, using histological and immunohistochemical staining, as well as molecularbiological analysis by RT-PCR, to assess the expression of specific marker genes. (3) Results: Plastic-adherent growth and in vitro trilineage differentiation capacity of all isolated cells were proven. Flow cytometry revealed the clear co-expression of surface markers CD44, CD73, CD90, and CD105 on all isolated cells. Adipogenesis was validated through the formation of lipid droplets, while osteogenesis was proven by the formation of calcium deposits within differentiated cell cultures. The formation of proteoglycans was observed during chondrogenesis in pellet cultures, with immunohistochemical staining revealing an increased relative gene expression of collagen type II. RT-PCR proved an elevated expression of specific marker genes after successful differentiation, with no significant differences regarding different cell source of native tissue. (4) Conclusions: Irrespective of the cell source of native tissue, all MSC-like cells showed multipotent differentiation potential in vitro. The multipotent differentiation capacity did not differ significantly, and chondrogenic differentiation was proven in all pellet cultures. Therefore, cell suitability for cell-based cartilage therapies and tissue engineering is given for various tissue origins that are routinely removed during total knee arthroplasty (TKA). This study might provide essential information for the clinical tool of cell harvesting, leading to more flexibility in cell availability. KW - knee joint KW - MSCs KW - cellular origin KW - cartilage regeneration KW - tissue engineering KW - cell-based therapies KW - osteoarthritis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262334 SN - 2076-3417 VL - 12 IS - 4 ER - TY - JOUR A1 - Wagenbrenner, Mike A1 - Mayer-Wagner, Susanne A1 - Rudert, Maximilian A1 - Holzapfel, Boris Michael A1 - Weissenberger, Manuel T1 - Combinations of hydrogels and mesenchymal stromal cells (MSCs) for cartilage tissue engineering — a review of the literature JF - Gels N2 - Cartilage offers limited regenerative capacity. Cell-based approaches have emerged as a promising alternative in the treatment of cartilage defects and osteoarthritis. Due to their easy accessibility, abundancy, and chondrogenic potential mesenchymal stromal cells (MSCs) offer an attractive cell source. MSCs are often combined with natural or synthetic hydrogels providing tunable biocompatibility, biodegradability, and enhanced cell functionality. In this review, we focused on the different advantages and disadvantages of various natural, synthetic, and modified hydrogels. We examined the different combinations of MSC-subpopulations and hydrogels used for cartilage engineering in preclinical and clinical studies and reviewed the effects of added growth factors or gene transfer on chondrogenesis in MSC-laden hydrogels. The aim of this review is to add to the understanding of the disadvantages and advantages of various combinations of MSC-subpopulations, growth factors, gene transfers, and hydrogels in cartilage engineering. KW - hydrogels KW - osteoarthritis KW - cartilage defects KW - MSCs KW - cartilage regeneration KW - tissue engineering Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250177 SN - 2310-2861 VL - 7 IS - 4 ER - TY - JOUR A1 - Pereira, A. R. A1 - Trivanović, D. A1 - Herrmann, M. T1 - Approaches to mimic the complexity of the skeletal mesenchymal stem/stromal cell niche in vitro JF - European Cells and Materials N2 - Mesenchymal stem/stromal cells (MSCs) are an essential element of most modern tissue engineering and regenerative medicine approaches due to their multipotency and immunoregulatory functions. Despite the prospective value of MSCs for the clinics, the stem cells community is questioning their developmental origin, in vivo localization, identification, and regenerative potential after several years of far-reaching research in the field. Although several major progresses have been made in mimicking the complexity of the MSC niche in vitro, there is need for comprehensive studies of fundamental mechanisms triggered by microenvironmental cues before moving to regenerative medicine cell therapy applications. The present comprehensive review extensively discusses the microenvironmental cues that influence MSC phenotype and function in health and disease – including cellular, chemical and physical interactions. The most recent and relevant illustrative examples of novel bioengineering approaches to mimic biological, chemical, and mechanical microenvironmental signals present in the native MSC niche are summarized, with special emphasis on the forefront techniques to achieve bio-chemical complexity and dynamic cultures. In particular, the skeletal MSC niche and applications focusing on the bone regenerative potential of MSC are addressed. The aim of the review was to recognize the limitations of the current MSC niche in vitro models and to identify potential opportunities to fill the bridge between fundamental science and clinical application of MSCs. KW - Mesenchymal stem/stromal cells KW - skeletal progenitor cells KW - niche KW - in vitro models KW - bone KW - tissue engineering Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268823 SN - 1473-2262 VL - 37 ER - TY - JOUR A1 - Hrynevich, Andrei A1 - Achenbach, Pascal A1 - Jungst, Tomasz A1 - Brook, Gary A. A1 - Dalton, Paul D. T1 - Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth JF - Macromolecular Bioscience N2 - In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a “wedge-design” melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers. All the measured parameters impact the probability that a fiber is suspended over multimillimeter distances. The height of the suspended fibers can be controlled by a concurrently fabricated fiber wall and the 3D suspended PCL fiber arrays investigated with early post-natal mouse dorsal root ganglion explants. The resulting Schwann cell and neurite outgrowth extends substantial distances by 21 d, following the orientation of the suspended fibers and the supporting walls, often generating circular whorls of high density Schwann cells between the suspended fibers. This research provides a design perspective and the fundamental parametric basis for suspending individual melt electrowritten fibers into a form that facilitates cell culture. KW - cell migration KW - electrospinning KW - fibers KW - neurite growth KW - polycaprolactone KW - tissue engineering Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257535 VL - 21 IS - 7 ER - TY - JOUR A1 - Haeusner, Sebastian A1 - Herbst, Laura A1 - Bittorf, Patrick A1 - Schwarz, Thomas A1 - Henze, Chris A1 - Mauermann, Marc A1 - Ochs, Jelena A1 - Schmitt, Robert A1 - Blache, Ulrich A1 - Wixmerten, Anke A1 - Miot, Sylvie A1 - Martin, Ivan A1 - Pullig, Oliver T1 - From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product JF - Frontiers in Medicine N2 - Advanced Therapy Medicinal Products (ATMP) provide promising treatment options particularly for unmet clinical needs, such as progressive and chronic diseases where currently no satisfying treatment exists. Especially from the ATMP subclass of Tissue Engineered Products (TEPs), only a few have yet been translated from an academic setting to clinic and beyond. A reason for low numbers of TEPs in current clinical trials and one main key hurdle for TEPs is the cost and labor-intensive manufacturing process. Manual production steps require experienced personnel, are challenging to standardize and to scale up. Automated manufacturing has the potential to overcome these challenges, toward an increasing cost-effectiveness. One major obstacle for automation is the control and risk prevention of cross contaminations, especially when handling parallel production lines of different patient material. These critical steps necessitate validated effective and efficient cleaning procedures in an automated system. In this perspective, possible technologies, concepts and solutions to existing ATMP manufacturing hurdles are discussed on the example of a late clinical phase II trial TEP. In compliance to Good Manufacturing Practice (GMP) guidelines, we propose a dual arm robot based isolator approach. Our novel concept enables complete process automation for adherent cell culture, and the translation of all manual process steps with standard laboratory equipment. Moreover, we discuss novel solutions for automated cleaning, without the need for human intervention. Consequently, our automation concept offers the unique chance to scale up production while becoming more cost-effective, which will ultimately increase TEP availability to a broader number of patients. KW - ATMP KW - tissue engineering KW - GMP KW - manufacturing KW - autologous KW - cartilage regeneration KW - automation & robotics KW - automation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244631 SN - 2296-858X VL - 8 ER -