TY - THES A1 - Reil, Michael T1 - Essentielle Rollen des LEM-Domänen Proteins MAN1 während der Organentwicklung von Xenopus laevis und überlappende Funktionen von Emerin T1 - Essential roles of LEM domaine protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin N2 - Mutationen in Genen, die für Kernhüllproteine codieren sind mit einer stetig zunehmenden Anzahl menschlicher Erkrankungen verbunden, die als Envelopathien bezeichnet werden. Erstaunlicherweise betrifft die Pathologie dieser Krankheiten spezifische Gewebe und Organe, obwohl entsprechende Proteine meist ubiquitär exprimiert werden. So führen beispielsweise Defekte in Emerin, einem Protein der inneren Kernhülle, zur X-chromosomalen Emery- Dreifuss Muskeldystrophie (EDMD). Diese Krankheit ist durch Muskelschwäche oder – schwund gekennzeichnet. Defekte im Kernhüllprotein MAN1 sind dagegen mit Krankheiten verbunden, die Knochen- und Hautgewebe betreffen. Interessanterweise besitzen beide Proteine eine evolutionär hoch konservierte Domäne, die sog. LEM-Domäne. LEM-Domänen Proteine können mit der Kernlamina interagieren, ebenso mit dem sog. Barrier-to- Autointegration Factor (BAF) sowie mit zahlreichen Transkriptionsfaktoren. Dennoch ist die funktionelle Rolle der LEM-Domänen Proteine bis dato nicht vollständig aufgeklärt. In der vorliegenden Studie sollten daher die Funktionen von MAN1 und Emerin während der Frühentwicklung von Xenopus laevis untersucht werden. Vorangehende Untersuchungen zeigten, dass Mikroinjektionen von XMAN1- Antikörpern in Zwei-Zell-Stadien befruchteter Eizellen zu einem Arrest der Zellteilung in der injizierten Blastomere führten. Da dabei eine Störung der Kernhüllbildung spekuliert wurde, sollte durch Antikörper-vermittelter Inhibition von XMAN1 die Bildung von in vitro Kernen im Xenopus Eiextrakt untersucht werden. Dabei wurden Kerne beobachtet, die dekondensiertes Chromatin zeigten, bei denen jedoch eine Fusion von Membranvesikeln zu einer durchgehenden Kernhülle nicht stattgefunden hatte. Frühere Charakterisierungen von MAN1 und Emerin zeigten unterschiedliche Expressionsmuster während der Entwicklung von X. laevis. Da XMAN1 ubiquitär exprimiert und Xemerin jedoch erstmals ab Stadium 41 nachweisbar ist, war es mittels Mikroinjektion von Xemerin möglich zu zeigen, dass es in der Lage ist den Arrest der Zellteilung zu verhindern. Es wurde daher die These aufgestellt, dass MAN1 und Emerin während der Frühentwicklung von Xenopus überlappende Funktionen besitzen. Um diese These zu prüfen, wurde zunächst unter Verwendung des Proximity Ligation Assays untersucht, ob beide Proteine miteinander interagieren können. Mit Hilfe dieser Methode konnte gezeigt werden, dass Interaktionen beider Proteine innerhalb der Kernhülle lokalisieren. Die Interaktionen blieben während der Mitose bestehen und waren erst wieder zum Ende der Mitose in der Kernhülle nachweisbar. Diese Resultate deuten daher darauf hin, dass XMAN1/Xemerin-Interaktionen während der ... N2 - Mutations in genes encoding for nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Interestingly, pathology of these diseases affects specific tissues and organs, even though the related proteins are expressed ubiquitous. Defects in the inner nuclear membrane protein emerin for example, are leading to X-linked Emery- Dreifuss muscular dystrophy (EDMD), characterized by muscle weakness or wasting. Conversely, defects in the nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with the nuclear lamina, the so called Barrier-to-Autointegration Factor (BAF) and several transcription factors. Nevertheless, knowledge of the functional roles of LEM proteins is still unclear. For this reason, this study aimed to investigate the roles of MAN1 and emerin during early Xenopus laevis development and nuclear envelope assembly. ... KW - Organogenese KW - Emerin KW - Kernhülle KW - LEM domaine KW - emerin KW - MAN1 KW - nuclear envelope KW - organogenesis KW - LEM-Domänen KW - Organentwicklung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85105 ER - TY - THES A1 - Gareiß, Martin T1 - Molekulare Charakterisierung und entwicklungsspezifische Expression der Kernmembranproteine Emerin und MAN1 im Tiermodell Xenopus laevis T1 - Molecular characterization and developmental expression of the nuclear membrane proteins ,emerin’ and ,MAN1’ in the model system Xenopus laevis N2 - Mutationen im humanen Emerin-Gen verursachen beim Menschen eine angeborene Muskelschwäche, die X-gebundene Emery-Dreifuss. Der Phänotyp dieser Störung manifestiert sich in der zweiten und dritten Lebensdekade durch Verkürzungen der Nacken , Ellenbogen- und Achillessehnen, progressiven Muskelschwund am Oberkörper sowie Störung der Reizweiterleitung und eine Kardiomyopathie. Zwar wurden die Funktionen dieses ubiquitären Kernmembranproteins bislang intensiv erforscht, allerdings blieben die krankheitsverursachenden Mechanismen, die für den späten Ausbruch der gewebespezifischen Erkrankung verantwortlich sind, noch weitestgehend unverstanden. Um Erkenntnisse über die pathologische(n) Funktion(en) des integralen Membranproteins Emerin zu gewinnen, wurde dessen spatio-temporäre Transkriptions- und Expressionsmuster während der frühen Embryonalentwicklung im Modellsystem Xenopus laevis charakterisiert. Durch EST-Datenbankanalysen konnten in der pseudotetraploiden Spezies zwei Emerin-Gene (Xemerin1 und -2) identifiziert werden. Im Unterschied zu dem längeren Säuger-Emerin (254 Reste bei Homo sapiens ) konnte allerdings kein Kernlokalisationssignal und auch kein serinreicher Sequenzbereich festgestellt werden. Durch Herstellung monoklonaler Antikörper wurde die subzelluläre und gewebespezifische Lokalisation der Xemerin-Proteine untersucht. Interessanterweise war Xemerin weder in der Immunfluoreszenz noch im Immunblot in Oozyten nachweisbar. Mit dem zweidimensionalen Gelektrophorese-Verfahren NEPHGE konnte gezeigt werden, dass der von uns hergestellte monoklonale Antikörper 59/7 beide Xemerin-Formen erkannte und die Proteine durch unterschiedliche molekulare Massen und isoelektrische Punkte voneinander zu trennen waren. Durch Immunoblotting embryonaler Proteine aus unterschiedlichen Entwicklungsstadien konnte gezeigt werden, dass Xemerin1 und -2 im Laufe der Embryogenese von Xenopus laevis erstmals im Entwicklungsstadium 43 exprimiert werden. Unerwarteterweise konnte durch RT-PCR-Analysen eine Aktivität der Xemerin-Gene während der gesamten Embryogenese belegt werden. Northernblot- und Sequenzanalysen der Xemerin-mRNA zeigten außerordentlich große untranslatierte Bereiche mit snRNP-Bindungsmotiven. Durch zwei voneinander unabhängige Analyseverfahren wurde festgestellt, dass die Xemerin-Genaktivität ab dem Stadium 30 deutlich zunahm. Äußerst interessant war in diesem Zusammenhang die Beobachtung, dass exakt zu diesem Zeitpunkt die Aktivität des XMAN1-Gens, einem weiteren Protein der inneren Kernmembran, signifikant herunterreguliert wurde. Whole-mount in situ Hybridisierungsversuche zeigten einen Xemerin-Expressionsschwerpunkt in neuro-ektodermalen Geweben von Tadpole-Embryonen, wie dies auch von XMAN1 (auch SANE genannt) berichtet wurde. Aufgrund dieser Erkenntnisse wurde angenommen, dass Xemerin und XMAN1 überlappende Funktionen aufweisen. Durch die Herstellung rekombinanter Fusionproteine konnte gezeigt werden, dass XMAN1 eine identische subzelluläre Verteilung wie Xemerin aufwies. In vitro Bindungsassays wiesen eine direkte Wechselwirkung von XMAN1 mit beiden Xemerin-Formen sowie mit Xenopus Lamin A nach. Diese Arbeit konnte durch die Charakterisierung von Xenopus Emerin die Grundlagen für weitere intensive Forschungen legen und zeigt eindeutig, dass das Modellsystem Xenopus laevis mit dem Säugermodell Maus konkurrenzfähig ist, um die krankheitsverursachende Mechanismen der Emery-Dreifuss Muskeldystrophie aufzuklären. N2 - Mutations in the human emerin gene EMD cause a rare form of an inheritated muscle dysfunction of striated muscle, named Emery-Dreifuss muscular dystrophy (EDMD1; OMIM 310300). The clinical phenotype of this genetic perturbance is manifested in 2nd-3rd decade by contraction of the cervical, elbow and Achilles tendons, by progressive muscle wasting and disturbance of the conduction system and cardiomyopathy, often leading to sudden death. Extensive investigations were made on the functions of this ubiquitous nuclear membrane protein, but the disease causing mechanisms remain obscure leading to the late onset of this tissue specific disease. To allure insights of the pathological function(s) of emerin this work examines the spatio-temporal transcription and expression patterns of emerin during development of the vertebrate model Xenopus laevis. Sequence analysis of EST-databases identified two emerin genes in the pseudo-tetraploid organism Xenopus laevis, Xemerin1 and Xemerin2, respectively. In comparison to the human and murine orthologues Xenopus emerins exhibit both similarities and differences. Structural analyses revealed an N-terminal conserved LEM-domain in the C-terminus and a unique hydrophobic transmembrane domain in the carboxy tail. Unlike the extended mammalian emerin (Homo sapiens 254 residues, Mus musculus 259 residues) neither a nucleus localization signal nor a serinerich region could be detected. However, comparison of the putative phosphorylation sites showed three equivalent sites as for the human emerin. Synthesis of specific monoclonal antibodies and recombinant fusion proteins elucidate the subcellular and tissue-specific localization of Xemerins. Similar to mammalian emerins immunofluorescence microscopy and immunoblotting showed clearly that both Xemerin1 and Xemerin2 are integral nuclear membrane proteins expressing ubiquitously in differentiated cells. Intriguingly, in oocytes Xemerin was undetectable by immunofluorescence and immunoblotting, respectively. Two-dimensional gel electrophoresis NEPHGE proved that our self-made monoclonal antibody 59/7 recognized both Xemerins highlighting two different molecular masses and isoelectric points. Interestingly, Xemerin2 exhibits an increased isoelectric point in 5-days old larvae than in adult somatic culture cells. Immunoblotting of embryonic proteins derived from different developmental stages showed that Xemerin1 and -2 are expressed in stage 43 (Nieuwkoop and Faber, 1975) during Xenopus embryogenesis for the first time. In this context, it is noteworthy that Xenopus A-type lamins – in contrast to previous reports – are already detectable in stage 28. Unexpectedly, RT-PCR analyses proved activity of the Xemerin genes during entire embryogenesis in all stages examined yet. Northern-blotting and sequence analyses of the Xemerin mRNA revealed exceeding untranslated regions with snRNP binding motives. Two independent techniques (band-quantification and quantitative real-time-PCR) bared a significantly increased activity of the Xemerin-genes upon stage 30. Outstanding interest provided the awareness, that exactly at this moment the activity of XMAN1, another inner nuclear membrane protein, was significantly down regulated. Whole mount in situ hybridizations exhibited stressed Xemerin expression in neuro-ectodermal tadpole tissues, as simultaneously reported for XMAN1 (also known as SANE) by to other groups (Osada et al., 2003; Raju et al., 2003). Congruent expression patterns of Xemerin proteins were provided by indirect immunofluorescence of embryonic thin-sections. These results corroborate the theory that XMAN1 and Xemerin could have overlapping functions. At first, recombinant fusion proteins showed an identical subcellular distribution of XMAN1 in comparison with Xemerin. Hence, in vitro binding assays proved direct interaction between Xemerins and XMAN1 as well as with Xenopus A-type lamins. Unfortunately, there is no functional XMAN1 antibody available up to now. Thus, it remains unclear if XMAN1 has overlapping functions with Xemerins during embryogenesis in vivo. Nevertheless, by characterizing Xenopus emerin this work displayed fundamental features for further studies. This opus definitely showed that the model system Xenopus laevis is competitive to the mammalian model ‘mouse’ elucidating the disease causing mechanisms of Emery-Dreifuss muscular dystrophy. KW - Glatter Krallenfrosch KW - Emerin KW - Oozyte KW - Xenopus laevis KW - Emerin KW - MAN1 KW - Oozyte KW - Embryonalentwicklung KW - Xenopus laevis KW - emerin KW - MAN1 KW - oocyte KW - early development Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19869 ER - TY - THES A1 - Motsch, Isabell T1 - Lamin A and lamin C are differentially dysfunctional in autosomal dominant Emery-Dreifuss muscular dystrophy T1 - Lamin A und Lamin C sind funktional unterschiedlich von der Emery-Dreifuss Muskeldystrophie betroffen N2 - Emery-Dreifuss muscular dystrophy (EDMD) is a rare genetic disorder characterised by early contractures of the elbows, Achilles tendons and spine, slowly progressive muscle wasting and cardiomyopathy associated with cardiac conduction defect. The autosomal dominant form is caused by mutations in the LMNA gene which gives rise to lamin A and lamin C proteins by alternative splicing. These A-type lamins, together with B-type lamins, form the nuclear lamina, a network of intermediate filament proteins underlining the nuclear envelope. In order to ascertain the role lamin A and C separately contribute to the molecular phenotype, we analysed ten LMNA mutations and one single nucleotide polymorphism (SNP) in transfection studies in COS7 fibroblasts and, partially, in C2C12 myoblasts. The EGFP or DsRed2 tagged lamins were exogenously expressed either individually or both A-types together and examined by light and electron microscopy. The protein mobility of lamin A mutants was determined by FRAP analysis. Additionally, a co-immunoprecipitation binding assay of in vitro synthesised A-type lamins and emerin was performed.Eight of the LMNA mutations (R50S, R133P, E358K, E358K+C