TY - JOUR A1 - Schülein, Ralf A1 - Kreft, Jürgen A1 - Gonski, Sigrid A1 - Goebel, Werner T1 - Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme N2 - During an investigation into the substrate specificity and processing of subtilisin Carlsberg from Bacillus licheniformis, two major independent findings were made: (i) as has been shown previously, a stretch of five amino acids (residues 97-101 of the mature enzyme) that loops out into the binding cleft is involved in substrate binding by subtilisin Carlsberg. In order to see whether this loop element also determines substrate specificity, the coding region for these five amino acids was deleted from the cloned gene for subtilisin Carlsberg by site-directed mutagenesis. Unexpectedly the resulting mutant preproenzyme (P42c, Mr=42 kDa) was not processed to the mature form (Mr = 30 kDa) and was not released into the medium by a proteasedeficient B. subtilis host strain; rather, it accumulated in the cell membrane. This result demonstrates that the integrity of this loop element, which is very distant from the processing cleavage sites in the preproenzyme, is required for secretion of subtilisin Carlsberg. (ii) In culture supernatants from B. subtilis harbouring the cloned wild-type subtilisin Carlsberg gene the transient appearance (at 0-3 h after onset of stationary phase) of a processing intermediate (P38c, Mr = 38 kDa) oftbis protease could be demonstrated. P38c very probably represents a genuine proform of subtilisin Carlsberg. KW - Biologie KW - Bacillus KW - Proenzyme KW - Subtilisin maturation KW - Site-directed mutagenesis KW - Subtilisin Carlsberg Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60577 ER - TY - JOUR A1 - Ondrusch, Nicolai A1 - Kreft, Jürgen T1 - Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes N2 - Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat. KW - Listeria monocytogenes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75451 ER - TY - JOUR A1 - Ondrusch, Nicolai A1 - Kreft, Jürgen T1 - Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in \(Listeria\) \(monocytogenes\) JF - PLoS ONE N2 - Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat. KW - Gram-positive bacteria KW - Sigma(B)-dependent stress-response KW - Non-phototrophic bacteria KW - Prfa-mediated virulence KW - NTP-binding-properties KW - Bacillus-subtilis KW - Receptor ytva KW - Lov domain KW - Factor sigma(B) Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134050 VL - 6 IS - 1 ER - TY - JOUR A1 - Lampidis, Robert A1 - Gross, Roy A1 - Sokolovic, Zeljka A1 - Goebel, Werner A1 - Kreft, Jürgen T1 - The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators N2 - No abstract available KW - Biologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60503 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Hughes, Colin T1 - Cloning vectors derived from plasmids and phage of Bacillus N2 - No abstract available Y1 - 1982 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47014 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Haas, Albert A1 - Goebel, Werner T1 - Isolation and characterization of genes coding for proteins involved in the cytolysis by Listeria ivanovii N2 - We established a library of chromosomal DNA of Listeria ivanovii in the pTZ19R plasmid system, using Escherichia coli DH5alpha as the host. One recombinant clone reacted strongly with a polyclonal antiserum raised against the listeriolysin 0 and a second exoprotein (24kDa) of L. ivanovii, which is most probably also involved in cytolytic processes. The recombinant E. coli clone may contain part of the listeriolysin 0 gene of L. ivanovii. Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46991 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Goebel, Werner T1 - Complex Co1E1 DNA in Escherichia coli and Proteus mirabilis N2 - Incubation of the colicinogenic Escherichia coli strain JC 411 (ColE1) at elevated temperatures (47-49°) leads to the accumulation of catenated molecules and replicative intermediates of this plasmid. Mature supercoiled OolE1 DNA molecules synthesized under these conditions have an increased number of tertiary turns as shown by electron microscopy. The monomeric tightly supercoiled molecules possess a slightly slower sedimentation rate and a higher binding capacity for ethidium bromide than supercoiJed monomers synthesized at lower temperatures. Recombination deficient mutants of E. coli recA, recB and recC, which carry the ColE1 plasmid, form about the same amount of catenated molecules at the elevated temperature as a rec+ strain. In addition, we have observed by electron microscopy a small percentage (.--.5% of the circular DNA molecules) of minicircular DNA molecules in all preparations of JC 411 (CoIE1). They are homogenous in size, with a molecular weight of 1.4 X 106 daltons. Addition of chloramphenicol to a culture of Proteus mirabilis (ColE1) leads to an increased amount of higher multiple circular oligomers and to a stimulated accumulation of catenated OolE1 DNA molecules of varying sizes. ColE1 DNA synthesis is more thermosensitive than chromosomal DNA replication in P. mirabili8. Plasmid replication stops completely at temperatures above 43°C. Y1 - 1974 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47044 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Funke, Dorothee A1 - Haas, Albert A1 - Lottspeich, Friedrich A1 - Goebel, Werner T1 - Production, purification and characterization of hemolysins from Listeria ivanovii and Listeria monocytogenes Sv4b. N2 - In culture supematants of both Listeria ivanovii and Listeria monocytogenes Sv4b, for the first time a hemolysin of molecular weight 58 kDa was identified, which had all the characteristics of an SH-activated cytolysin, and which was therefore identified as Iisteriolysin 0 (LLO). In the case of L. ivanovii a second major supematant protein of molecular weight 24 kDa co-purified with LLO. However, the function of this protein has to be determined. In culture supematants of L. ivanovii a sphingomyelinase and a Iecithinase activity could be detected, both enzymatic activities together contributing to the pronounced hemolysis caused by L. ivanovii. The N-tenninal amino acid sequences of LLO and the 24 kDa from L. ivanovii are shown. KW - Biologie KW - Hemolysin KW - Listeria Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60545 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Funke, D. A1 - Schlesinger, R. A1 - Lottspeich, F. A1 - Goebel, Werner T1 - Purification and characterization of cytolysins from Listeria monocytogenes serovar 4b and Listeria ivanovii N2 - Several exoproteins from Listeria monocytogenes serovar 4b (NCTC 10527) and Listeria ivanovii (ATCC) 19119, SLCC 2379), respectively, have been purified to homogeneity by thiol-disulfide exchange chromatography and gel filtration. Both strains produce a haemolytic/cytolytic protein of Mr 58 kDa, which has all the properties of a SH-activated cytolysin, the prototype of which is streptolysin 0 (SLO), and this protein has therefore heen termed Iisteriolysin 0 (LLO). In addition a protein of Mr 24 kDa from culture supernatants of L. ivanovii co-purified withLLO. The N-terminal aminoacid sequences of both proteins from L. ivanovii have been determined. By mutagenesis with transposons of Gram-positive origin (Tn916 and TnI545), which have been introduced via conjugation into L. ivanovii, several phenotypic mutants (altered haemolysis on sheep blood agar or lecithinase-negative) were obtained. Results on the properties of these muntants will he presented. Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47036 ER - TY - JOUR A1 - Kreft, Jürgen A1 - Burger, Klaus J. A1 - Goebel, Werner T1 - Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis N2 - Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by σ55 of B. subtilis RNA polymerase. KW - Biologie Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60600 ER -