TY - JOUR A1 - Hovestadt, Thomas A1 - Poethke, Hans J. A1 - Messner, Stefan T1 - Variability in dispersal distances generates typical successional patterns: a simple simulation model N2 - More recently, it became clear that conclusions drawn from traditional ecological theory may be altered substantially if the spatial dimension of species interactions is considered explicitly. Regardless of the details of these models, spatially explicit simulations of ecological processes have nearly universally shown that spatial or spatio-temporal patterns in species distributions can emerge even from homogeneous starting conditions; limited dispersal is one of the key factors responsible for the development of such aggregated and patchy distributions (cf., Pacala 1986, Holmes et al. 1994, Molofsky 1994, Tilman 1994, Bascompte and Sole 1995, 1997, 1998, Jeltsch et al. 1999). In line with these ideas, we wish to draw attention to the fact that in heterogeneous landscapes differences in characteristic dispersal distances between species are a sufficient precondition for the emergence of a successional pattern. We will use a simple, spatially explicit simulation program to demonstrate the validity of this statement. We will also show that the speed of the successional progress depends on scale and heterogeneity in the distribution of suitable habitat. KW - community KW - competition KW - environments KW - habitats KW - life-history Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48178 ER -