TY - JOUR A1 - Jones, Julia C. A1 - Fruciano, Carmelo A1 - Keller, Anja A1 - Schartl, Manfred A1 - Meyer, Axel T1 - Evolution of the elaborate male intromittent organ of Xiphophorus fishes JF - Ecology and Evolution N2 - Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have “gonopodia,” highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation. KW - Male intromittent organ KW - reproductive character displacement KW - sexual selection KW - species diversification KW - Xiphophorus fish Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164956 VL - 6 IS - 20 ER - TY - JOUR A1 - Hölldobler, Bert T1 - Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection JF - PLoS ONE N2 - The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents KW - exocrine glands KW - dichthadiigynes KW - legionary ants KW - queens KW - sexual selection KW - army ants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167057 VL - 11 IS - 3 ER - TY - JOUR A1 - Schartl, Manfred A1 - Erbelding-Denk, Claudia A1 - Holter, Sabine A1 - Nanda, Indrajit A1 - Schmid, Michael A1 - Schroder, Johannes H. A1 - Epplen, Jörg T. T1 - Reproductive failure of dominant males in the poeciliid fish Limia perugiae determined by DNA fingerprinting N2 - Hierarchical structures among male indlviduals in a population are frequently reflected ln differences in aggressive and reproductive behavior and access to the females. In general, sodal dominance requires the Investments, which in turn then may have to be compensated for by high reproductive success. However, this hypothesls has so far only been sufficiently tested in small mating groups (one or two males with one or two females) due to the difficulties of determining paternity by conventional methods. DNA fingerprinting overcomes these problems by offering the possibility to determine genetic relationships and mating patterns within larger groups [Borke, T. (1989) Trends Ecol. Evol. 4, 139-144]. We show here that in the poecUiid fish Limia perugitu, in small matlng groups the dominant male has 8 mating success of 100%, whereas ln larger groups lts contribution to the offspring unexpectedly drops to zero. KW - Physiologische Chemie KW - reproductive success KW - sexual selection KW - size polymorpbism KW - sodal domlnance KW - simple repetitive sequences Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61643 ER -