TY - JOUR A1 - Feldbauer, Katrin A1 - Schlegel, Jan A1 - Weissbecker, Juliane A1 - Sauer, Frank A1 - Wood, Phillip G. A1 - Bamberg, Ernst A1 - Terpitz, Ulrich T1 - Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\) JF - PLoS ONE N2 - An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light. KW - capacitance KW - endosomes KW - cell membranes KW - membrane proteins KW - intracellular membranes KW - vesicles KW - confocal laser microscopy KW - cytosol Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178921 VL - 11 IS - 10 ER - TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Memmel, Simon A1 - Sukhorukov, Vladimir L. A1 - Höring, Marcus A1 - Westerling, Katherine A1 - Fiedler, Vanessa A1 - Katzer, Astrid A1 - Krohne, Georg A1 - Flentje, Michael T1 - Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN and p53 Status N2 - Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo−/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance Cm = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest Cm values of 3.7–4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types. KW - cell membranes KW - hypotonic KW - capacitance KW - isotonic KW - microvilli KW - membrane characteristics KW - membrane proteins KW - scanning electron microscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111322 ER -